视觉SLAM14讲笔记
文章平均质量分 91
分点总结视觉SLAM14讲重要的数学原理。注重理论体系的完备性和推导易于接受性。对原书的重点进行分点总结和微调。
^鸢飞鱼跃^
专注人工智能,计算机视觉,编程方面主攻python,c++,CUDA。
展开
-
视觉SLAM14讲笔记05:ch7三角测量,PnP,ICP
三角测量三角测量考虑图像 I1I_{1}I1 和 I2,I_{2},I2, 以左图为参考,右图的变换矩阵为 TTT 。相机光心为 O1O_{1}O1 和 $O_{2} 。在。 在。在I_{1}$ 中有特征点 p1,p_{1},p1, 对应 I2I_{2}I2 中有特征点 p2p_{2}p2 。理论上直线 O1p1O_{1} p_{1}O1p1 与 O2p2O_{2} p_{2}O2p2 在 场景中会相交于一点 P,该点即是两个特征点所对应的地图点在三维场景中的位置。然而由于噪声的影响原创 2020-05-11 21:56:20 · 560 阅读 · 0 评论 -
视觉SLAM14讲笔记04:ch7对极几何(epipolar geometry)
2D-2D:对极几何(epipolar geometry)对极约束现在,假设我们从两张图像中,得到了一对配对好的特征点,像图7-7里显示的那样。如果我们有若干对这样的匹配点,就可以通过这些二维图像点的对应关系,恢复出在两帧之间摄像机的运动。连线 O1p1‾\overline{O_{1} p_{1}}O1p1 和连线 O2p2‾\overline{O_{2} p_{2}}O2p2 在三维空间中会相交于点 PPP。O1O2PO_1O_2PO1O2P称为极平面(Epipolar plane原创 2020-05-11 17:59:27 · 1061 阅读 · 0 评论 -
视觉SLAM14讲笔记03:ch7图像特征提取与匹配
图像我们从最简单的图像一灭度图开始说起。在一张灰度图中,每个像素位置 (xxx, yyy) 对 应到一个灰度值 III,所以一张宽度为 www,高度为 hhh 的图像,数学形式可以记成一个矩阵:I(x,y)∈Rw×hI(x, y) \in \mathbb{R}^{w \times h}I(x,y)∈Rw×h然而,计算机并不能表达整个实数空间,所以我们只能在某个范围内,对图像进行量化。例如常见的灰度图中,我们用0-255之间整数(即一个unsigned char, —个字节)来表达图像的灰度大小。原创 2020-05-11 17:53:28 · 868 阅读 · 0 评论 -
视觉SLAM14讲笔记01:ch2-4李群与李代数
三维空间刚体运动SLAM数学表达xk=f(xk−1,uk,wk)\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right)xk=f(xk−1,uk,wk)这里uk\boldsymbol{u}_{k}uk是运动传感器的读数(有时也叫输入),wk\boldsymbol{w}_{k}wk为噪声。我们把它称为运动方程。与运动方程相对应,还有一个观测方程。当小萝卜在x原创 2020-05-10 15:58:15 · 374 阅读 · 0 评论 -
视觉SLAM14讲笔记02:ch5针孔,双目相机模型
相机相机将三维世界中的坐标点(单位为米)映射到二维图像平面(单位为像素)的过程能够用一个几何模型进行描述。这个模型有很多种,其中最简单的称为针孔模型。针孔模型是很常用,而且有效的模型,它描述了一束光线通过针孔之后,在针孔背面投影成像的关系。在本书中我们用一个简单的针孔相机模型来对这种映射关系进行建模。同时,由于相机镜头上的透镜的存在,会使得光线投影到成像平面的过程中会产生畸变。因此,我们使用针孔和畸变两个模型来描述整个投影过程。针孔相机模型根据三角形相似关系Zf=−XX′=−YY′\frac{Z}{原创 2020-05-11 17:49:31 · 1013 阅读 · 0 评论