黄金连分数
黄金分割数0.61803... 是个无理数,这个常数十分重要,在许多工程问题中会出现。有时需要把这个数字求得很精确。
对于某些精密工程,常数的精度很重要。也许你听说过哈勃太空望远镜,它首次升空后就发现了一处人工加工错误,对那样一个庞然大物,其实只是镜面加工时有比头发丝还细许多倍的一处错误而已,却使它成了“近视眼”!!
言归正传,我们如何求得黄金分割数的尽可能精确的值呢?有许多方法。
比较简单的一种是用连分数:1
黄金数 = ---------------------
1
1 + -----------------
1
1 + -------------
1
1 + ---------
1 + ...这个连分数计算的“层数”越多,它的值越接近黄金分割数。
请你利用这一特性,求出黄金分割数的足够精确值,要求四舍五入到小数点后100位。
小数点后3位的值为:0.618
小数点后4位的值为:0.6180
小数点后5位的值为:0.61803
小数点后7位的值为:0.6180340
(注意尾部的0,不能忽略)
你的任务是:写出精确到小数点后100位精度的黄金分割值。注意:尾数的四舍五入! 尾数是0也要保留!
显然答案是一个小数,其小数点后有100位数字,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
答案:0.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374
题目解目
斐波那契数列两项比值
大数运算,大数加法 大数减法,大数除法
#include <iostream>
#include <string>
#include <sstream>
#include <algorithm>
using namespace std;
/*
1 转为斐波那契数列的n和n+1项
2 n 取多少?之后在增加n,100位小数不变了
3 手动运算,加法和除法
*/
int n = 500;
void i2s(int num, string &str){
stringstream ss;
ss << num;
ss >> str;
}
//大数加法
string add(string a, string b){
a = a.substr(a.find_first_not_of('0'));
b = b.substr(b.find_first_not_of('0'));
long long lenA = a.length();
long long lenB = b.length();
long long len = max(lenA, lenB) + 10;
//反转,便于运算
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
string ans(len, '0');//初始化答案为len长的字符0
for(int i = 0; i < lenA; i++){
ans[i] = a[i];
}
int tmp = 0;
for(int i = 0; i < len; i++){
if(i < b.length()){
tmp += (ans[i]-'0') + (b[i]-'0'); //上一位相加后的进位
}else{
tmp += (ans[i]-'0');
}
ans[i] = tmp % 10 + '0';
tmp /= 10;
}
reverse(ans.begin(), ans.end());
return ans.substr(ans.find_first_not_of('0'));
}
int cmp(string a, string b){
if(a.find_first_not_of('0') == string::npos){
a = '0';
}else{
a.substr(a.find_first_not_of('0'));
}
if(b.find_first_not_of('0') == string::npos){
b = '0';
}else{
b.substr(b.find_first_not_of('0'));
}
if(a == b){
return 0;
}
if(a.length() > b.length()){
return 1;
}else if(a.length() < b.length()){
return -1;
}else{
if(a < b){ //按照字典排序比较大小
return -1;
}
if(a > b){
return 1;
}else{
return 0;
}
}
}
//只考虑a 一定大于等于 b
string subtract(string a, string b){
reverse(a.begin(), a.end()) ;
reverse(b.begin(), b.end());
// string ans = a;
for(int i = 0; i < b.length(); i++){
if(a[i] >= b[i]){
a[i] = a[i] - b[i] + '0'; //差值+‘0’才会转换成字符
} else{
int k = 1;
while(a[i+k] == '0'){
a[i+k] = '9';
k++;
}
//保证i+k位上不是0
a[i+k] = a[i+k] - '1' + '0';
a[i] = (a[i] - '0' + 10) - (b[i] - '0') + '0';
}
}
reverse(a.begin(), a.end());
if(a.find_first_not_of('0') == string::npos){
return "0";
}
return a.substr(a.find_first_not_of('0'));
}
string divide(string a, string b){
//只考虑a<b
string ans = "0.";
//转成减法
for(int i = 0; i < 101; i++) {
a.append("0");
int t = 0;
while(cmp(a, b) >= 0){ //a>=b
a = subtract(a, b); //不停做减法
t++; //记录做减法次数
}
string t_str;
i2s(t, t_str);
ans.append(t_str);
}
return ans;
}
int main(int argc, char** argv) {
string a = "1";
string b = "1";
// cout << add(a, b) << endl;
// cout << subtract(a, b) << endl;
// cout << divide(a, b) << endl;
for(int i = 3; i <= n; i++) {
string tmp = b;
b = add(a, b);
a = tmp;
}
a b 是斐波那契数列的第n-1和n项
string res = divide(a, b);
cout << res << endl;
cout << res.length()-2 << endl;
//
return 0;
}