[Openpcdet] Conda 更新 GCC版本 + Openpcdet踩坑之部分坑

Conda 环境中更新gcc版本,下面以在安装gcc9.3的版本为例,具体记录一下每个步骤的作用:

首先,在Search :: Anaconda.org  conda 官方网站上搜索对应的gcc版本的安装命令,我这里的安装gcc 9.3 ,但是我们搜索的时候可能会出现多个如何区分呢?

这里是因为,看到很多其他网上资料上安装7.3的时候的命令是,gcc_linux-64,那么每个版本的不同在于前面的词 不一样,细看下面两张图:

 所以我们选择对应版本的 gcc 了,

点进去,

将这行命令在命令行里面执行,如下图所示: 

安装之后,我们这个时候还需要做一下软连接,具体的做法是:参考:如何改变anaconda 的 gcc 版本? - 知乎

通常情况下,我们安装完上面的命令后,在我们的虚拟空间里会有对应的路径在 ~/anaconda/envs/env_name/libexec/gcc/x86_64-conda-linux-gnu/对应的版本/

那么我们建立软连接的命令就是:

ln -s ~/anaconda/envs/env_name/libexec/gcc/x86_64-conda-linux-gnu/对应的版本/gcc    ~/anaconda/envs/env_name/bin/gcc

我们不需要去找bin里面有没有gcc,只需要按照这个命令建立就好了。如下图所示

但是,有时候也会遇到一些链接已经存在的时候,这个时候可以考虑强制建立,相当于删除原来的软连接重新建立当前的,命令也就是,如下图所示:

ln -sf ~/anaconda/envs/env_name/libexec/gcc/x86_64-conda-linux-gnu/对应的版本/gcc    ~/anaconda/envs/env_name/bin/gcc

建立好了之后,我们还需要去安装一些依赖,我理解的应该是安装对应的g++:

conda install gcc_linux-64

我发现我这里之前安装过了,于是我直接查看了一下gcc -v就已经好了。

最后查看一下conda list的版本就好了。 

 

 写到这,关于Conda 更新GCC 部分就结束了。

如果你也和我一样,是Openpcdet的坑里徜徉的话,还可以继续往下看:

我以后好了,但是 develop之后出现问题了:

猜想还可能是版本的问题,因为前面报错提示说的是,需要GCC7.xx 我因为在另一个服务器里面安装的gcc9没有问题,就试了换成了9,结果这里还是问题来了。

好吧,我只能在换成7。在网上搜索了之后,发现:

Command ‘[‘which‘, ‘x86_64-conda_cos6-linux-gnu-c++‘]‘ returned non-zero exit status 1_command '['which', 'x86_64-conda_cos7-linux-gnu-c+-CSDN博客 

和我的问题一样,就试了一下,执行:

conda install gxx_linux-64 

 

发现直接就把我的gcc版本也换掉了。是了一下develop就好了。

中间还降低了一下kornia版本到: kornia==0.6.5 就运行起来了。

<think>好的,我现在需要帮助用户安装torchvision 0.4.1版本,并且指定CUDA 9.2的支持。首先,我得回忆一下conda的基本命令和如何指定版本以及CUDA版本。用户可能已经安装了PyTorch的某个版本,需要确保torchvision与之兼容。 首先,我应该检查PyTorch和torchvision之间的版本兼容性。torchvision 0.4.1可能对应PyTorch 1.2.0版本,对吗?我需要确认这一点。通常,PyTorch和torchvision的版本是匹配的,比如torchvision 0.4.x对应PyTorch 1.2.x。所以用户可能需要同时安装PyTorch 1.2.0和CUDA 9.2的版本。 接下来,CUDA 9.2是比较旧的版本,现在常见的可能是CUDA 10.x或11.x。所以用户可能在旧的环境中工作,比如需要兼容旧的GPU驱动。CUDA 9.2对应的PyTorch版本可能只支持到某个特定版本,比如PyTorch 1.2.0。这时候,安装命令可能需要从旧版本的渠道获取包,比如使用conda的特定频道或者指定正确的构建标签。 然后,考虑到conda的包管理,正确的安装命令可能需要指定版本和CUDA版本。通常,PyTorch和torchvision的conda包会带有类似cudatoolkit=9.2的依赖,或者构建标签如cu92。例如,安装PyTorch 1.2.0时,可能需要使用`pytorch=1.2.0 cudatoolkit=9.2`,而torchvision则是`torchvision=0.4.1`。但有时候可能需要更具体的构建字符串,比如`py3.7_cuda9.2.148`之类的。 另外,用户可能已经尝试过直接`conda install torchvision=0.4.1`,但发现安装的版本不匹配或者CUDA版本不对。这时候可能需要指定更详细的包来源,比如从PyTorch的官方conda频道安装,例如`-c pytorch`,同时指定CUDA版本。 可能还需要注意Python版本兼容性,比如如果用户使用的是Python 3.6或3.7,而旧版本的torchvision可能不支持更新Python版本。需要提醒用户检查Python版本是否符合要求。 此外,如果conda仓库中没有预编译的对应版本,可能需要通过pip安装,但用户要求使用conda,所以可能需要确认是否存在对应的conda包。或者,用户可能需要添加特定的conda频道,比如`-c pytorch-legacy`或者其他第三方维护的频道。 最后,安装完成后,用户需要验证安装是否正确,包括检查torchvision的版本,CUDA是否可用,以及是否可以正常导入使用。可能需要指导用户运行一些测试代码,例如检查`torch.cuda.is_available()`和`torchvision.__version__`。 总结步骤应该是:1. 确认PyTorch版本兼容性;2. 使用conda安装指定版本的torchvision和对应的PyTorch,指定CUDA 9.2;3. 验证安装是否正确。</think>以下是安装torchvision 0.4.1 + CUDA 9.2的详细步骤: --- ### **步骤1:确认版本兼容性** - **PyTorch要求**:torchvision 0.4.1需要与PyTorch 1.2.0版本配合使用 - **CUDA支持**:CUDA 9.2需要NVIDIA驱动版本 ≥ 384.81(建议提前用`nvidia-smi`命令检查驱动) --- ### **步骤2:创建conda虚拟环境(可选但推荐)** ```bash conda create -n torch_env python=3.6 # 建议使用Python 3.6/3.7 conda activate torch_env ``` --- ### **步骤3:安装PyTorch 1.2.0 + CUDA 9.2** ```bash conda install pytorch=1.2.0 torchvision=0.4.1 cudatoolkit=9.2 -c pytorch ``` - `cudatoolkit=9.2`:指定CUDA工具包版本 - `-c pytorch`:从PyTorch官方仓库下载 --- ### **步骤4:验证安装** ```python import torch import torchvision print(torch.__version__) # 应输出 1.2.0 print(torchvision.__version__) # 应输出 0.4.1 print(torch.cuda.is_available()) # 应输出 True ``` --- ### **常见问题** 1. **找不到包**: - 检查conda源:`conda config --show channels` - 添加PyTorch源:`conda config --append channels pytorch` 2. **CUDA不可用**: - 检查NVIDIA驱动版本是否支持CUDA 9.2 - 确认安装命令中`cudatoolkit=9.2`参数正确 --- ### **备用方案(如果conda失败)** 使用pip安装(需先卸载conda版): ```bash pip install torch==1.2.0+cu92 torchvision==0.4.1+cu92 -f https://download.pytorch.org/whl/torch_stable.html ``` --- ### **注意事项** - 该组合适用于较旧项目(如部分论文代码复现) - 新项目建议使用更高版本的PyTorch+torchvision
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值