题目选自洛谷P1678
如果仅仅是套循环的话显然在数据比较大的情况下是不够优化 的,所以我们可以先把得到的分数线排序再二分操作。
这道题二分的原理很简单,因为我们求的是某一个学生和某一个分数线最小的差的绝对值,当我们采用二分的时候,就会很快逼近我们要找的那个分数线,并且在其附近波动,只需要无脑记录在波动过程中出现过的最小的差的绝对值,就可以找到题目的答案了。
题目背景
计算机竞赛小组的神牛V神终于结束了高考,然而作为班长的他还不能闲下来,班主任老t给了他一个艰巨的任务:帮同学找出最合理的大学填报方案。可是v神太忙了,身后还有一群小姑娘等着和他约会,于是他想到了同为计算机竞赛小组的你,请你帮他完成这个艰巨的任务。
题目描述
现有 m(m≤100000) 所学校,每所学校预计分数线是 ai(ai≤10^6)。
有n(n≤100000) 位学生,估分分别为 bi(bi≤10^6)。
根据n位学生的估分情况,分别给每位学生推荐一所学校,要求学校的预计分数线和学生的估分相差最小(可高可低,毕竟是估分嘛),这个最小值为不满意度。求所有学生不满意度和的最小值。
输入格式
第一行读入两个整数m,n。m表示学校数,n表示学生数。第二行共有m个数,表示m个学校的预计录取分数。第三行有n个数,表示n个学生的估分成绩。
输出格式
一行,为最小的不满度之和。
输入输出样例
输入 1
4 3 513 598 567 689 500 600 550
输出 1
32
说明/提示
数据范围:
对于30%的数据,m,n<=1000,估分和录取线<=10000;
对于100%的数据,n,m<=100,000,录取线<=1000000。
解题代码:
#include<stdio.h>
#include<iostream>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
int n,m;
int sch[100010],stu[100010];
int main(){
cin>>m>>n;
int ans = 0;
for(int i=0;i<m;i++)
scanf("%d",&sch[i]);
for(int i=0;i<n;i++)
scanf("%d",&stu[i]);
sort(sch,sch+m);
int k=0;
while(k<n){
int l = 0, r = m-1 ;
int sc=1000000;
while(l<=r){
int mid = (l+r)/2;
if(sch[mid]==stu[k]) {sc = 0; break;}
else if(sch[mid] < stu[k]){
sc = min(sc,abs(sch[mid]-stu[k]));
l = mid +1;
}else if(sch[mid] > stu[k]){
sc = min(sc,abs(sch[mid]-stu[k]));
r = mid - 1;
}
}
ans += sc;
k++;
}
cout<<ans;
return 0;
}