宅K
码龄6年
关注
提问 私信
  • 博客:17,472
    17,472
    总访问量
  • 6
    原创
  • 1,799,279
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2019-01-19
博客简介:

weixin_44573992的博客

查看详细资料
个人成就
  • 获得9次点赞
  • 内容获得3次评论
  • 获得34次收藏
创作历程
  • 6篇
    2021年
成就勋章
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

图形学基础——PC手机图形API介绍

基础概念
原创
发布博客 2021.12.16 ·
342 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

图形学基础——纹理

什么是纹理宏观的角度上来说就是一张2D图片,每个像素上都有 RGB 值为什么要出现纹理降低建模工作量,牺牲几何细节降低存储空间提高读取速度纹理采样设置——Wrap ModeRepeat :重复Mirror :重复左右镜像,上下反转Clamp :超出的部分为Texture的边Border :使用定值进行填充纹理采样设置——Filter Model过滤设置,当纹理通过变化产生拉伸的时候,要使用哪种滤波来进行纹理的表现 最近邻 —— 向最近的像素进行纹理取样表现,这个形式带来
原创
发布博客 2021.12.15 ·
4246 阅读 ·
3 点赞 ·
2 评论 ·
12 收藏

数学基础——MVP矩阵

什么是MVP矩阵MVP矩阵分别是模型(Model),观察(View),投影(Projection)三个矩阵。顶点坐标起始于局部空间(Local Space),之后变为世界坐标(World Coordinate),观察坐标(View Coordinate),裁剪坐标(Clip Coordinate),并最后以屏幕坐标(Screen Coordinate)的形式结束1.M矩阵模型空间到世界空间的转换矩阵变换是左乘法则,先缩放,再旋转,再平移,因为矩阵乘法不满足乘法交换律2.V矩阵世界空间到相机
原创
发布博客 2021.12.15 ·
4228 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

数学基础——矩阵

线性方程1.什么是线性方程具有可加性,比例性,即常数倍k,用数学函数表达方式就是f(x1 + x2)= f(x1)+f(x2)2x + 3y = 1f(kx)= kf(x)x + y = 22x + 2y = 4但是并不是所有方程都是线性方程,比如我们学过的三角函数,x元x次方程就不是线性方程,此类被称为非线性方程x + y2 = 5sinx + cosx = 1x + xy = 32.什么是线性空间直线变换后依然是直线,并且等比坐标原点保持不变3.什么是非线性空间空间
原创
发布博客 2021.12.15 ·
730 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

数学基础——向量

什么是向量1.向量的定义向量是有大小和方向的有向线段。向量没有位置,只有大小和方向。向量的箭头是向量的结束点,尾巴是向量的起始点。向量描述的位移能被认为是与轴平行的位移序列。向量表示:三维(ax,ay,az) 二维(ax,ay)。2.向量与标量向量:有大小和方向的有向线段。标量:只有大小,没有方向的量。3.向量与点向量和点数学形式上相等,但几何意义完全不同。点:有位置,没有实际大小或方向。向量:无位置,有实际大小和方向。任何一个点都可以看作是从原点出发的向量。4.零向量
原创
发布博客 2021.12.15 ·
5645 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

渲染流水线

渲染流水线渲染流水线1.应用阶段2.几何阶段(Cpu)3.光栅化阶段(GPU)4.逐片元操作后处理渲染流水线渲染流水线基本上分为: 应用阶段(准备数据)~ 几何阶段(CPU,顶点着色器,矩阵变换,数学计算 )~ 光栅化阶段1.应用阶段准备基本的场景数据(将数据加载到缓存上)1.1. 场景物体数据 物体变换的数据 * 坐标、旋转、缩放 物体网格的数据 * 顶点坐标、uv贴图1.2. 摄像机数据 坐标、方向、远近裁剪平面、正交、透视投影(FOV) 视口比例、尺寸1.3.
原创
发布博客 2021.12.14 ·
2281 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏