- 博客(6)
- 收藏
- 关注
原创 图形学基础——纹理
什么是纹理宏观的角度上来说就是一张2D图片,每个像素上都有 RGB 值为什么要出现纹理降低建模工作量,牺牲几何细节降低存储空间提高读取速度纹理采样设置——Wrap ModeRepeat :重复Mirror :重复左右镜像,上下反转Clamp :超出的部分为Texture的边Border :使用定值进行填充纹理采样设置——Filter Model过滤设置,当纹理通过变化产生拉伸的时候,要使用哪种滤波来进行纹理的表现 最近邻 —— 向最近的像素进行纹理取样表现,这个形式带来
2021-12-15 18:20:21 4226 2
原创 数学基础——MVP矩阵
什么是MVP矩阵MVP矩阵分别是模型(Model),观察(View),投影(Projection)三个矩阵。顶点坐标起始于局部空间(Local Space),之后变为世界坐标(World Coordinate),观察坐标(View Coordinate),裁剪坐标(Clip Coordinate),并最后以屏幕坐标(Screen Coordinate)的形式结束1.M矩阵模型空间到世界空间的转换矩阵变换是左乘法则,先缩放,再旋转,再平移,因为矩阵乘法不满足乘法交换律2.V矩阵世界空间到相机
2021-12-15 17:05:10 4219
原创 数学基础——矩阵
线性方程1.什么是线性方程具有可加性,比例性,即常数倍k,用数学函数表达方式就是f(x1 + x2)= f(x1)+f(x2)2x + 3y = 1f(kx)= kf(x)x + y = 22x + 2y = 4但是并不是所有方程都是线性方程,比如我们学过的三角函数,x元x次方程就不是线性方程,此类被称为非线性方程x + y2 = 5sinx + cosx = 1x + xy = 32.什么是线性空间直线变换后依然是直线,并且等比坐标原点保持不变3.什么是非线性空间空间
2021-12-15 16:50:53 726 1
原创 数学基础——向量
什么是向量1.向量的定义向量是有大小和方向的有向线段。向量没有位置,只有大小和方向。向量的箭头是向量的结束点,尾巴是向量的起始点。向量描述的位移能被认为是与轴平行的位移序列。向量表示:三维(ax,ay,az) 二维(ax,ay)。2.向量与标量向量:有大小和方向的有向线段。标量:只有大小,没有方向的量。3.向量与点向量和点数学形式上相等,但几何意义完全不同。点:有位置,没有实际大小或方向。向量:无位置,有实际大小和方向。任何一个点都可以看作是从原点出发的向量。4.零向量
2021-12-15 10:57:09 5638
原创 渲染流水线
渲染流水线渲染流水线1.应用阶段2.几何阶段(Cpu)3.光栅化阶段(GPU)4.逐片元操作后处理渲染流水线渲染流水线基本上分为: 应用阶段(准备数据)~ 几何阶段(CPU,顶点着色器,矩阵变换,数学计算 )~ 光栅化阶段1.应用阶段准备基本的场景数据(将数据加载到缓存上)1.1. 场景物体数据 物体变换的数据 * 坐标、旋转、缩放 物体网格的数据 * 顶点坐标、uv贴图1.2. 摄像机数据 坐标、方向、远近裁剪平面、正交、透视投影(FOV) 视口比例、尺寸1.3.
2021-12-14 16:27:00 2276
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人