什么是向量
1.向量的定义
向量是有大小和方向的有向线段。
向量没有位置,只有大小和方向。
向量的箭头是向量的结束点,尾巴是向量的起始点。
向量描述的位移能被认为是与轴平行的位移序列。
向量表示:三维(ax,ay,az) 二维(ax,ay)。
2.向量与标量
向量:有大小和方向的有向线段。
标量:只有大小,没有方向的量。
3.向量与点
向量和点数学形式上相等,但几何意义完全不同。
点:有位置,没有实际大小或方向。
向量:无位置,有实际大小和方向。
任何一个点都可以看作是从原点出发的向量。
4.零向量
零向量是唯一大小为零的向量。
零向量是唯一一个没有方向的量。
零向量不是一个点,因为没有定义某个位置。
零向量表示的是没有位移。
如何计算
1.标量与向量之间的计算
不可加
不可减
可乘:将向量的每个分量与标量相乘即可
可除:将向量的每个分量与标量的倒数相乘
几何解释:向量乘以标量的效果是以标量的大小缩放向量的长度,负值则方向相反
例子:-2 *(2,-5)=(-4,10) (6,-2,-4)/ 2 &
本文详细介绍了向量的概念,包括定义、性质、与点的区别,以及向量的模长、标准化、加减法、点积和叉积的计算。同时,探讨了向量在光照模型中的应用,如兰伯特光照模型。此外,还展示了向量在Shader编程中的使用,解释了如何在Unity中实现漫反射光照。
最低0.47元/天 解锁文章
423

被折叠的 条评论
为什么被折叠?



