NOIP 模拟题 小象涂色

本文探讨了NOIP竞赛中的一道模拟题——小象涂色问题,采用概率动态规划(DP)进行求解。通过设立f[i][j]表示涂色i次后颜色为j的概率,利用转移方程f[i+1][j]+=f[i][j]*0.5(考虑不改变颜色的概率)和f[i+1][(j*x)%c]+=f[i][j]/(2*c)(遍历所有可能颜色)进行状态转移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MZOJ

概率dp
f [ i ] [ j ] f[i][j] f[i][j]表示一个点被刷了 i i i次最后为 j j j的颜色的概率

转移方程式
f [ i + 1 ] [ j ] + = f [ i ] [ j ] ∗ 0.5      f[i+1][j]+=f[i][j]*0.5\;\; f[i+1][j]+=f[i][j]0.5应为 i i i在第 i + 1 i+1 i+1之后有 1 2 \frac{1}{2} 21的概率会变,等于说是选还是不选

f [ i + 1 ] [ ( j ∗ x )    m o d    c ] + = f [ i ] [ j ] / ( 2 ∗ c )        f[i+1][(j*x)\;mod\;c]+=f[i][j]/(2*c)\;\;\; f[i+1][(jx)modc]+=f[i][j]/(2c) (x枚举颜色)    ~~   乘以 1 2 \frac{1}{2} 21是因为可能不选这个方块

Code

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(register int (i)=(a);(i)<=(b);(i)++)
#define don(i,a,b) for(register int (i)=(a);(i)>=(b);(i)--)
using namespace std;
const int maxn=1e6+10;
const int maxm=1e3+10;
int T,n,c,k,cnt[maxn],tot;
double f[maxm][maxm],ans;

template <class t> inline void read(t &x) {
	x=0;int f=1;char ch=getchar();
	while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
	while(isdigit(ch)){x=10*x+ch-'0';ch=getchar();}
	x*=f;
}

void init() {
	memset(f,false,sizeof(f));
	memset(cnt,false,sizeof(cnt));
	tot=0,ans=0;
	read(n),read(c),read(k);
	rep(i,1,k) {
		int l,r;
		read(l),read(r);
		rep(j,l,r) {
			cnt[j]++;
			tot=max(tot,cnt[j]);
		}
	}
}

void work() {
	read(T);
	while(T--) {
		init();
		f[0][1]=1;
		rep(i,0,tot-1) {
			rep(j,0,c-1) {
				f[i+1][j]+=f[i][j]/2;
				rep(x,0,c-1) f[i+1][(j*x)%c]+=f[i][j]/(2*c);
			}
		}
		rep(i,1,n)
		 rep(j,0,c-1)
		 ans+=f[cnt[i]][j]*j;
		printf("%.9f\n",ans);
	}
}

int main() {
	freopen("input.txt","r",stdin);
	//readdata();
	work();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值