NOWCODER
T1:
若只有一组数,考虑计算一组数的贡献总值
e
g
.
eg.
eg.
5,1,3,5,6五个数
考虑重复数
5
5
5,对于第一个
5
5
5,右端点无论是在
1
,
2
,
3
,
4
,
5
1,2,3,4,5
1,2,3,4,5(下标位置)都会增加一点贡献,对于第二个
5
5
5,对它有影响的只有离他最近的
5
5
5,我们看只有左端点在第一个
5
5
5的位置右边一位开始才对他无影响。所以一组数可以预处理出来了
rep(i,1,n) {
int pos=pre[a[i]];
ans+=(i-pos)*(k*n%mod-i+1+mod)%mod;//k*n是对于第一组数的右端点可以延伸到k*n
ans%=mod;
pre[a[i]]=i;
}
而它有 k k k组重复的数
对于从第二组数起,每组数的中的某一个元素做出的贡献应是:
(
(
i
−
1
)
∗
n
−
p
r
e
[
a
[
i
]
]
)
∗
∑
i
=
2
i
<
=
n
(
k
∗
n
−
(
i
−
1
)
∗
n
+
1
)
((i-1)*n-pre[a[i]])*\sum^{i<=n}_{i=2}{(k*n-(i-1)*n+1)}
((i−1)∗n−pre[a[i]])∗i=2∑i<=n(k∗n−(i−1)∗n+1)
而除开第一组之外有
k
−
1
k-1
k−1组,则总贡献是
(
(
i
−
1
)
∗
n
−
p
r
e
[
a
[
i
]
]
)
∗
∑
i
=
2
i
<
=
n
(
k
∗
n
−
(
i
−
1
)
∗
n
+
1
)
∗
(
k
−
1
)
((i-1)*n-pre[a[i]])*\sum^{i<=n}_{i=2}{(k*n-(i-1)*n+1)}*(k-1)
((i−1)∗n−pre[a[i]])∗i=2∑i<=n(k∗n−(i−1)∗n+1)∗(k−1)
解释+发现
- k ∗ n k*n k∗n表示每个数都可以向右延伸到 k ∗ n k*n k∗n
- i i i是第一组的某个元素的位置, ( i − 1 ) ∗ n (i-1)*n (i−1)∗n这个重复的元素在第 n n n组数中的位置所在
- σ \sigma σ求和中的数是一个等差数列
- 我们会发现后面的数都是 C t r l c + C t r l v Ctrl\;c+Ctrl\;v Ctrlc+Ctrlv则所有 ( ( i − 1 ) ∗ n − p r e [ a [ i ] ] ) ((i-1)*n-pre[a[i]]) ((i−1)∗n−pre[a[i]])都是相等的,则直接可以通过第一二组找出答案
#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(register int (i)=(a);(i)<=(b);(i)++)
#define don(i,a,b) for(register int (i)=(a);(i)>=(b);(i)--)
using namespace std;
const int maxn=1e6+10;
const ll mod=1e9+7;
const int maxm=1e3+10;
const ll inf=500000004;
ll n,ans,k;
ll a[maxn],len[maxn];
map<int ,int > pre;
template <class t> inline void read(t &x)
{
x=0;int f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=10*x+ch-'0';ch=getchar();}
x*=f;
}
void readdata() {
read(n);read(k);
rep(i,1,n) {read(a[i]);a[i+n]=a[i];}
}
void work() {
rep(i,1,n) {
int pos=pre[a[i]];
ans+=(i-pos)*(k*n%mod-i+1+mod)%mod;
ans%=mod;
pre[a[i]]=i;
}
rep(i,n+1,2*n) {
int pos=pre[a[i]],_i=i-n;
ans+=(i-pos)*inf%mod*(k*n%mod-_i*2+2+mod)%mod*(k-1)%mod;
ans%=mod;
pre[a[i]]=i;
}
ans=(ans%mod+mod)%mod;
printf("%lld\n",ans);
}
int main() {
freopen("input.txt","r",stdin);
readdata();
work();
return 0;
}