论文121:Hierarchical discriminative learning improves visual representations (2023, CVPR, 开源)

1. 要点

题目:提升生物医学显微图视觉表示的层级辨别性学习 (Hierarchical discriminative learning improves visual representations biomedical microscopy)

代码:https://github.com/MLNeurosurg/hidisc

研究目的
已有的自监督表示学习 (SSL) 方法在应用于WSI时存在局限性,包括假设同一患者的图像块是独立的、忽视了临床生物医学显微镜图像的层次结构,以及需要强烈的数据增强来提高下游性能,但这些增强可能会降低图像特征的可区分性

关键技术

  1. 层次化判别学习(HiDisc)
    利用临床生物医学显微镜图像固有的患者-WSI-图像块层次结构,定义了一个层次化的自监督学习任务,通过在数据层次中定义正样本对,结合图像块、幻灯片,以及患者的判别学习目标进行视觉SSL;
  2. 自监督对比学习框架
    在该框架中,正样本对是基于数据层次中的共同祖先来定义的,用于视觉SSL的统一图像块、幻灯片和患者判别学习目标;
  3. 层次化数据结构的利用
    通过在数据层次中采样图像块,引入了正样本之间的多样性,避免了对强烈、领域不可知的数据增强的需求。

数据集

  1. SRH:用于多类组织病理学癌症诊断任务的数据集,包括正常脑组织和6种不同的脑肿瘤诊断。
  2. TCGA:用于分子遗传突变预测的数据集,专注于脑肿瘤患者的WSI,特别是诊断为弥漫性胶质瘤的患者。

说明
和已有自监督表示学习的主要区别在于,其利用了患者-WSI-区块这一层级结构,设计了一个融合每个层级对比损失的新损失。单看某一个层次,和已有方法没啥区别。

2 方法

2.1 患者-WSI-图像块层次结构

HiDisc的动机是,临床WSI中的视场 (fields-of-view,从患者肿瘤中采样的) 是一组多样化的图像示例,它们捕获了相同的潜在癌症诊断。HiDisc专注于在已知的临床患者-WSI-图像块层次结构的背景下,使用多样化的视场来改善视觉表示学习。大多数包含在公共癌症组织病理学数据集中的患者,包括癌症基因组图谱 (TCGA) 和OpenSRH,都包含多个WSI作为他们临床癌症诊断的一部分。这些WSI可能是从患者肿瘤的不同位置采样的,或者是同一肿瘤标本的不同区域。在人类癌症中,组织病理学和分子异质性已经被很好地描述,这鼓励临床医生获取多个标本/样本/视图。

为了利用图1中显示的层次结构,我们在图像块、幻灯片和患者级别创建正样本对,以定义具有相应视觉特征多样性增加的不同判别学习任务:

  1. 图像块判别:正样本对是通过相同图像块的不同随机增强创建的,该策略类似于现有的通过实例判别进行SSL的工作;
  2. 幻灯片判别:正样本对是从同一WSI中采样的不同增强的图像块创建的,其捕获了同一标本内的局部特征多样性。可以在这一层次上捕获细胞学和组织结构特征的区域差异;
  3. 患者判别:正样本对是从同一患者的不同WSI中创建的。来自不同WSI的图像块具有相同的潜在癌症诊断,但由于空间上分离的肿瘤标本,可能具有最大的特征多样性。此外,这一层次上还捕获了标本质量、处理和染色等方面的多样性;

    层次判别任务的概述如图2。

2.2. 层次判别

HiDisc损失函数基于NT-Xent构建,并受到文献[27, 56]的启发,目的是为了处理多个正样本对。与常规的对比学习损失不同,HiDisc损失在训练过程中不使用类别标签,而是使用生物医学显微图像的固有层级信息,来提升视觉SSL。表1展示了一些重要参数:

  1. n n n个患者中随机采样一个小批次、每个患者采样 n s n_s ns个WSI、每个WSI采样 n p n_p np个区块,并对每个区块增强 n a n_a na次;
  2. 如果一个患者少于 n s n_s ns个WSI,则会对幻灯片重复采样;
  3. 假设 n p n_p np远小于可以用WSI采样的区块数量;
  4. 如果患者只有一个WSI,则只考虑WSI辨别能力而非患者辨别能力;

    HiDisc损失包含了三个层级上损失的和,每个损失对应于区块-WSI-患者层级中的一个辨别性任务,以便在每个级别上捕获正样本对。具体地,对于层级 ℓ \ell HiDisc损失定义如下:
    L HiDisc ℓ = ∑ i ∈ I − 1 ∣ P ℓ ( i ) ∣ ∑ p ∈ P ℓ ( i ) log ⁡ e x p ( z i ⋅ z p / τ ) ∑ a ∈ A ( i ) e x p ( z i ⋅ z a / τ ) (1) \tag{1} L^{\ell}_{\text{HiDisc}} = \sum_{i \in \mathcal{I}}\frac{-1}{|\mathcal{P}_\ell(i)|} \sum_{p \in \mathcal{P}_{\ell}(i)} \log \frac{exp({z_i \cdot z_p / \tau)}}{\sum_{a \in \mathcal{A}(i)} exp({z_i \cdot z_a / \tau)}} LHiDisc=iIP(i)1pP(i)logaA(i)exp(ziza/τ)exp(zizp/τ)(1)其中 ℓ \ell 属于 { Patch , Slide , Patient } \{\text{Patch}, \text{Slide}, \text{Patient}\} {Patch,Slide,Patient},代表判别级别,以及 I \mathcal{I} I是小批量中所有图像的集合。 A ℓ ( i ) \mathcal{A}_\ell(i) A(i)是除了锚点图像 i i i之外 I \mathcal{I} I中所有图像的集合:
    A ( i ) = I ∖ { i } , (2) \tag{2} \mathcal{A}(i) = \mathcal{I} \setminus \{i\}, A(i)=I{i},(2)以及 P ℓ ( i ) P_{\ell}(i) P(i) i i i ℓ \ell 级别上的正样本对集合,定义为:
    P ℓ ( i ) = { p ∈ A ℓ ( i ) : ancestry ℓ ( p ) = ancestry ℓ ( i ) } , (3) \tag{3} \mathcal{P}_{\ell}(i) = \{p \in \mathcal{A}_\ell(i) : \text{ancestry}_{\ell}(p) = \text{ancestry}_{\ell}(i)\}, P(i)={pA(i):ancestry(p)=ancestry(i)},(3)其中 ancestry ℓ ( ⋅ ) \text{ancestry}_{\ell}(\cdot) ancestry()表示批量中增强图像块在 ℓ \ell 级别上的祖先关系。例如,来自同一患者的图像块 x i x_i xi x j x_j xj会有相同的患者祖先,即 ancestry Patient ( x i ) = ancestry Patient ( x j ) \text{ancestry}_{\text{Patient}}(x_i) = \text{ancestry}_{\text{Patient}}(x_j) ancestryPatient(xi)=ancestryPatient(xj)

区块级别、WSI级别,以及患者级别的HiDisc损失共享相同的对比目标,但在层次结构中的不同级别捕获正样本对。每个损失在小批量中会有不同的正样本对数量。完整的HiDisc损失是所有级别判别损失的总和:
L HiDisc = ∑ ℓ ∈ { Patch , Slide , Patient } λ ℓ L HiDisc ℓ , (4) \tag{4} \mathcal{L}_{\text{HiDisc}} = \sum_{\ell \in \{\text{Patch}, \text{Slide}, \text{Patient}\}} \lambda_{\ell} L^{\ell}_{\text{HiDisc}}, LHiDisc={Patch,Slide,Patient}λLHiDisc,(4)其中 λ ℓ \lambda_{\ell} λ是总损失中级别 ℓ \ell 的权重超参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值