实战深度学习常见问题汇总
拜托别延毕_a
发疯科研日常,欢迎交流学习~
展开
-
验证集精度来回震荡是什么原因,怎么解决
验证集精度来回震荡是什么原因,怎么解决原创 2023-02-22 16:17:20 · 5153 阅读 · 1 评论 -
RuntimeError: DataLoader worker (pid(s) 17016, 18312) exited unexpectedly
RuntimeError: DataLoader worker (pid(s) 17016, 18312) exited unexpectedly原创 2023-02-18 14:44:37 · 3613 阅读 · 0 评论 -
AttributeError: type object ‘VisionTransformer‘ has no attribute ‘from_pretrained‘
AttributeError: type object 'VisionTransformer' has no attribute 'from_pretrained'原创 2023-02-17 20:05:24 · 1051 阅读 · 0 评论 -
深度学习:AttributeError: module ‘torchvision.transforms‘ has no attribute ‘Scale‘
报错:AttributeError: module 'torchvision.transforms' has no attribute 'Scale'原创 2022-06-20 11:00:32 · 3582 阅读 · 0 评论 -
深度学习:from tensorflow.contrib.rnn import LSTMStateTuple没有contrib模块
ModuleNotFoundError: No module named ‘tensorflow.contrib‘原创 2022-06-17 16:28:44 · 1223 阅读 · 0 评论 -
深度学习:ImportError: cannot import name ‘QuantStub‘ from ‘torch.ao.quantization‘
错误语句:from torch.ao.quantization import QuantStub, DeQuantStub正确语句:from torch.quantization import QuantStub, DeQuantStubtorch版本问题。原创 2022-04-17 09:00:09 · 12934 阅读 · 2 评论 -
深度学习:view size is not compatible with input tensor‘s size and stride (at least one dimension spans a
错误提示:view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.错误代码:prec1 = accuracy(-1 * dist_xt_ct.data, target_targets, topk=(1,))[0].item()正确代码:原创 2022-04-12 11:26:07 · 1839 阅读 · 0 评论 -
深度学习:size of input tensor and input format are different
错误代码: writer.add_image("input", imgs, step, dataformats='HWC')正确代码: writer.add_images("input", imgs, step, dataformats='HWC')错误原因:add_image只接收单一图像,而我们直接将imgs批量传入是不行的。...原创 2022-04-08 09:20:34 · 584 阅读 · 0 评论 -
深度学习:invalid index of a 0-dim tensor. Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to
版本问题源代码:test_loss += F.nll_loss(out_tgt.log(), target_label, size_average=False).data[0] # sum up batch loss修改后代码:test_loss += F.nll_loss(out_tgt.log(), target_label, size_average=False).item() # sum up batch loss原创 2022-04-05 14:23:38 · 3952 阅读 · 0 评论 -
深度学习:name ‘xrange‘ is not defined
python3中应将所有的xrange换为range原创 2022-04-01 19:37:26 · 2541 阅读 · 0 评论 -
深度学习:Could not find a version that satisfies the requirement httplib (from versions: none)
python版本问题,在python3中,httplib名字换了解决办法:pip install http.client原创 2022-03-19 10:50:49 · 1448 阅读 · 0 评论 -
深度学习:RuntimeError: No CUDA GPUs are available
提前声明:我的环境里面已经安装torch,而且cuda版本与安装环境是匹配的,但就是出现了这个错误。测试(使用cuda必须要做的测试):环境没有问题,GPU也是可用的,但为什么依然报错。解决方法: 因为我的电脑上只有一块GPU,因为我们的装备和程序员装备的差异,所以要更改GPU的使用个数。os.environ["CUDA_VISIBLE_DEVICES"] = "1"讲这里的1改为0,使用第一块GPU进行训练就可以啦~os.environ["C..原创 2022-03-26 14:45:56 · 7269 阅读 · 0 评论 -
深度学习:关于多个DLL同时被调用问题
警告原因:对应的环境下的numpy包里有多个DLL,虽然有警告,但是不影响训练结果解决办法: 找到对应的DLL,只留一个,删除多余的。笔者DLL地址:B:\anaconda\envs\pytorch\Lib\site-packages\numpy\.libs...原创 2022-03-24 10:53:56 · 2496 阅读 · 0 评论 -
深度学习:动态调节学习率
if args.bottleneck: optimizer = torch.optim.SGD([ {'params': model.feature_layers.parameters()}, {'params': model.bottle.parameters(), 'lr': args.lr[1]}, {'params': model.cls_fc.parameters(), 'lr': args.lr[2]}, ], lr=..原创 2022-03-24 08:51:04 · 2390 阅读 · 0 评论 -
深度学习:CUDA ERROR: device-side assert triggered at 问题及解决思路
查了好几种方法就是没有一个适合我的,最后发现所有的问题都已一个通病,就是数据集的问题,所以就仔细看了一下参数,果然,我换了数据集之后的类别是31,以前一直是12,所以才会导致一直报错,只要将对应的 数据集类别数更改一下,就可以跑起来啦~更改前:# parser.add_argument('--num_class', type=int, default=12)这里默认数据集类别是12类,是有问题的p更改后:arser.add_argument('--num_class', type=i原创 2022-03-15 19:43:19 · 1545 阅读 · 0 评论 -
深度学习:数据集损失的衡量标准
train_loss是训练集的损失值,test_loss是测试集的损失值train_loss不断下降,test_loss不断下降,说明模型仍有训练空间;train_loss不断下降,test_loss趋于不变,说明模型过拟合;train_loss趋于不变,test_loss不断下降,说明数据集有问题;train_loss趋于不变,test_loss趋于不变,说明需要减小学习率或调整步长;————————————————原文链接:https://blog.csdn.net/Yxh666/arti原创 2022-03-19 16:50:22 · 3793 阅读 · 0 评论 -
深度学习: 数据集路径明明正确但是却无法识别
昨天在调试代码的时候,遇到路径不存在的bug,反复修改怎么也出不来,绝对路径和相对路径都试过了,心想怎么能犯这么低级的错误……最后请教了一个学长,也是修改了半天,最后终于调试出来,原因是代码放的路径太深了最后把代码放到桌面上,修改路径,一下就跑起来了~还是得要有经验啊~...原创 2022-03-22 10:23:12 · 1675 阅读 · 1 评论 -
深度学习:OFFICE31数据集训练精度每次都是100%
这个是office31数据集跑出来的结果,每次都是100%,肯定有问题。后来经过一系列的探索,发现office31数据集的三个类别中,每个都有一个images的文件,于是将images里面的文件全部取出来,然后将images文件删除像这样amazon文件下直接对应数据集,重新运行代码,就正常了!...原创 2022-03-22 16:51:52 · 3441 阅读 · 1 评论