
pytorch学习
拜托别延毕_a
发疯科研日常,欢迎交流学习~
展开
-
深度学习pytorch代码:利用GPU进行卷积神经网络训练(含代码注释)
GPU训练方法一.cuda可以使用GPU训练的内容:数据(输入、标签) 损失函数 网络模型GPU训练方法二.to(device)# 使用cpu训练device = torch.device("cpu")#使用GPU训练torch.device("cuda")# 指定训练的GPUtorch.device("cuda:0")model.eval() # 将模型转化为测试类型model.train() # 将模型转化为训练模型...原创 2022-04-11 10:39:08 · 4048 阅读 · 1 评论 -
深度学习pytorch代码:完整的卷积神经网络模型的搭建及训练(含注释)
import torch.optim.optimizerimport torchvision# 准备数据集from torch.utils.tensorboard import SummaryWriterfrom model import *from torch.utils.data import DataLoadertrain_data = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data".原创 2022-04-11 08:59:52 · 2558 阅读 · 0 评论 -
深度学习pytorch:VGG网络模型的使用、修改及保存、添加线性层、修改网络输出
# 现有网络模型的使用及修改import torchvisionfrom torch import nn# 加载预训练网络模型vgg16_true = torchvision.models.vgg16(pretrained=True) # 下载网络模型vgg16_false = torchvision.models.vgg16(pretrained=False) # 只是加载网络模型print((vgg16_true))train_data = torchvision.datas.原创 2022-04-10 15:45:09 · 4184 阅读 · 2 评论 -
深度学习pytorch代码:损失函数与反向传播
损失函数:计算实际输出和目标之间的差距 为我们更新输出提供一定的依据(反向传播)注: 在L1损失下,如果reduction=none,则输入和输出的维度要相同import torchfrom torch import nnfrom torch.nn import L1Loss, MSELossinputs = torch.tensor([1, 2, 3], dtype=torch.float32)targets = torch.tensor([1, 2,...原创 2022-04-10 14:36:05 · 1265 阅读 · 0 评论 -
深度学习pytorch代码:Sequential的使用及CIFAR10模型搭建实战
CIFAR10模型结构:import torchfrom mmcv.cnn import Conv2d, MaxPool2d, Linearfrom torch import nnfrom torch.nn import Flatten, Sequentialclass LR(nn.Module): def __init__(self): super(LR, self).__init__() # self.conv1 = Conv2d.原创 2022-04-10 11:12:57 · 1386 阅读 · 0 评论 -
深度学习pytorch:linear()
import torchimport torchvision.datasetsfrom mmcv import DataLoaderfrom mmcv.cnn import Linearfrom torch import nndataset = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=False, transform=torchvision.transforms.ToTe.原创 2022-04-08 19:23:37 · 265 阅读 · 0 评论 -
深度学习pytorch代码:非线性激活Relu()
input为ReLu()中的一个参数,默认为Faluse,保留输入数据import torchfrom torch.nn import ReLUfrom torch import nninput =torch.tensor([ [1, -0.5], [-1, 3] # 1为batchsize])output = torch.reshape(input, (-1, 1, 2, 2))print(output.shape)class LR(nn.Module): ...原创 2022-04-08 11:12:54 · 2507 阅读 · 0 评论 -
深度学习pytorch代码:dilation空洞卷积、最大池化
dilation=1,称为空洞卷积,在卷积核相邻像素之间插入一个空白像素。默认池化核:kernel_size = 3Ceil_model=True or False: 是否对非完整像素进行保留(默认为False)import torchimport torchvision.datasetsfrom mmcv import DataLoaderfrom mmcv.cnn import MaxPool2dfrom torch import nnfrom torch.utils..原创 2022-04-08 10:40:21 · 3190 阅读 · 4 评论 -
深度学习pytorch代码:卷积神经网络模型module的搭建、卷积层conv_1 conv_2
jmodule是所有神经网络模块的基类,我们自己构造的模型也应该继承这个类。import torchfrom torch import nnclass LR(nn.Module): def __init__(self) -> None: # 重写方法快捷键 alt+insert super().__init__() def forward(self, input): output = input + 1 return ou原创 2022-04-07 22:17:52 · 483 阅读 · 0 评论 -
深度学习pytorch代码: torchvision 中的数据集使用 、DataLoader的使用
torchvision中数据集的自动下载以及使用import torchvisionfrom tensorboardX import SummaryWriterdataset_transform = torchvision.transforms.Compose( [torchvision.transforms.ToTensor() ])train_set = torchvision.datasets.CIFAR10(root="./data", train=True, transf原创 2022-04-07 21:11:18 · 608 阅读 · 0 评论 -
深度学习pytorch代码: transforms结构及用法 常见的transforms
transforms.py 工具箱totensor resize图片-------->工具(transforms)---------->结果 | 使用工具创建具体的工具 transforms.ToTensor()使用工具:输入:图片输出:result = tool(图片)from PIL import Image as imimfrom tensorboardX...原创 2022-04-07 17:34:15 · 2596 阅读 · 0 评论 -
深度学习pytorch代码:TensorBoard使用 图像变换 transforms的使用
from torch.utils.tensorboard import SummaryWriterimport numpy as npfrom PIL import Imagewriter = SummaryWriter("logs") # 存储事件文件image_path = r"C:\Users\123\Desktop\python4.7\hymenoptera_data\train\ants\0013035.jpg"image_PIL = Image.open(image_path).原创 2022-04-07 15:13:37 · 346 阅读 · 0 评论 -
深度学习pytorch代码:数据加载 Dataset() Dataloader()
Dataset(): 提供一种方式去获取数据及其label功能:如何获取每个数据及其label 告诉我们总共有多少数据Dataloader(): 为后面的网络提供不同的数据形式(对数据进行打包)from torch.utils.data import Datasetfrom PIL import Imageimport osclass MyData(Dataset): def __init__(self, root_dir,label_dir): sel原创 2022-04-07 14:29:16 · 697 阅读 · 0 评论 -
深度学习pytorch代码:两大函数—dir() && help()
dir():打开、看见help():说明书打开工具箱:dir(pytorch)输出:1、2、3、4dir(pytorch.3)输出:a,b,c查看其功能:help(pytorch.3.a)输出:将此扳手放在特定的地方,然后拧动实战:import torchtorch.cuda.is_available()# Out[3]: Truedir(torch)'''Out[4]: ['AVG', 'AggregationType', 'Ali.原创 2022-04-07 11:21:21 · 258 阅读 · 1 评论