数据孤岛一直是企业转型道路上最大的敌人,它所形成的信息分割,就像是一个个肆意吞噬数据的小黑洞,无法保持完整性和流动性的数据碎片,一直折磨着设备自动化、车间智能化的进程,成为不折不扣的效率杀手。
一个真正的数字化工厂系统,对内部和外部数据、系统和流程正确性的依赖性,会大幅增加,这对于企业所有业务流程都至关重要。数据完整性通常被不假思索地视为一个技术问题,然而它的背后,却是一个工厂管理的问题。它可以直接影响着盈利能力,甚至声誉和监管责任等。
例如:一个有着精湛经验的轴承小企业,正在努力跻身于国际供应链,然而当德国设备商前来评估工厂的时候,发现质量缺陷无法溯源的时候,对工厂的质管能力就会产生怀疑。
随着工业互联网的发展,基于无处不在的传感器和泛在网络,加上云端的计算能力,工厂的数字化能力正在有着成熟的技术支撑,甚至跨行业、跨领域地开展云协同都成为可能。
然而,对中小型企业而言,这个挑战巨大,数字化工厂的转型并不容易。中小企业在数字化转型过程中,率先需要解决的就是数据流中存在着各种断点,而这些断点往往也是导致企业效率“跑冒滴漏”的地方。
搭建数字化工厂管理系统三步走
一、建立连接
实现业务流程标准化、信息化,达到全流程的信息协同,消除各部门间的信息孤岛。
二、获取洞察
挖掘流程痛点,提高企业运作效率,实现为客户提供全生命周期的服务,降低运营成本、提高工作效率,提高公司的盈利能力和市场竞争能力。
三、自主决策
大数据分析、自主决策、最优资源分配,分析积累的大量业务数据,识别风险,挖掘价值点,逐步实现现场管理的智能化资源配置。
降本、增效、提质、减存、创新是企业永恒不变的投资效益追求。过去,企业往往寄望于一套软件就能解决关键管理问题,并获得生产率的提升。现在,为了改善瓶颈,企业必须进行管理模式和营运流程的调整,在信息化的支撑下更有效率地达到成效。