1.Flume概述
1.1Flume定义
Flume是Cloudera提供的一个 高可用的、高可靠的分布式的海量数据采集、聚合和传输的系统。Flume基于流式架构,灵活简单。(只读取日志文本文件)
1.2Flume基础架构
1.2.1 Agent
Agent 是一个 JVM 进程,它以事件的形式将数据从源头送至目的,是 Flume 数据传输的基本单元。
Agent 主要有 3 个部分组成,Source、Channel、Sink。
1.2.2 Source
**Source 是负责接收数据到 Flume Agent 的组件。**Source 组件可以处理各种类型、各种格式的日志数据,包括 avro、thrift、exec、jms、spooling directory、netcat、sequence generator、 syslog、http、legacy。
1.2.3 Channel
**Channel 是位于 Source 和 Sink 之间的缓冲区。**因此,Channel 允许 Source 和 Sink 运作 在不同的速率上。Channel 是线程安全的,可以同时处理几个 Source 的写入操作和几个 Sink 的读取操作。
Flume 自带两种 Channel:Memory Channel 和 File Channel。
** Memory Channel 是内存中的队列。Memory Channel 在不需要关心数据丢失的情景下适 用。**如果需要关心数据丢失,那么 Memory Channel 就不应该使用,因为程序死亡、机器宕机或者重启都会导致数据丢失。
File Channel 将所有事件写到磁盘。因此在程序关闭或机器宕机的情况下不会丢失数据。
1.2.4 Sink
Sink 不断地轮询 Channel 中的事件且批量地移除它们,并将这些事件批量写入到存储或 索引系统、或者被发送到另一个 Flume Agent。
**Sink 是完全事务性的。**在从 Channel 批量删除数据之前,每个 Sink 用 Channel 启动一 个事务。批量事件一旦成功写出到存储系统或下一个 Flume Agent,Sink 就利用 Channel 提 交事务。事务一旦被提交,该 Channel 从自己的内部缓冲区删除事件。
Sink 组件目的地包括 hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。
1.2.5 Event
传输单元,Flume 数据传输的基本单元,以事件的形式将数据从源头送至目的地。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EAaXEai1-1619530749184)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\1618721338230.png)]
2.Flume快速入门
2.1Flume安装部署
2.2.1 Flume 安装地址
1) Flume 官网地址
http://flume.apache.org/
2)文档查看地址
http://flume.apache.org/FlumeUserGuide.html
3)下载地址
http://archive.apache.org/dist/flume/
2.2.2 安装部署
1)将 apache-flume-1.7.0-bin.tar.gz 上传到 linux 的/opt/software 目录下
2)解压 apache-flume-1.7.0-bin.tar.gz 到/opt/module/目录下
[atguigu@hadoop102 software]$ tar -zxf apache-flume-1.7.0-
bin.tar.gz -C /opt/module/
3)修改 apache-flume-1.7.0-bin 的名称为 flume
[atguigu@hadoop102 module]$ mv apache-flume-1.7.0-bin flume
4) 将 flume/conf 下的 flume-env.sh.template 文件修改为 flume-env.sh,并配置 flume
env.sh 文件
[atguigu@hadoop102 conf]$ mv flume-env.sh.template flume-env.sh
[atguigu@hadoop102 conf]$ vi flume-env.sh
export JAVA_HOME=/opt/module/jdk1.8.0_144
2.2Flume入门案例
2.2.1监控端口数据官方案例
1)案例需求:首先,Flume 监控本机 44444 端口,然后通过 telnet 工具向本机 44444 端口发
送消息,最后 Flume 将监听的数据实时显示在控制台。
2)3.创建 Flume Agent 配置文件 flume-telnet-logger.conf
在 flume 目录下创建 job 文件夹并进入 job 文件夹。
[atguigu@hadoop102 flume]$ mkdir job
[atguigu@hadoop102 flume]$ cd job/
在 job 文件夹下创建 Flume Agent 配置文件 flume-telnet-logger.conf。
[atguigu@hadoop102 job]$ touch flume-telnet-logger.conf
在 flume-telnet-logger.conf 文件中添加如下内容。
[atguigu@hadoop102 job]$ vim flume-telnet-logger.conf
添加内容如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
开启 flume 监听端口
[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet-logger.conf -Dflume.root.logger=INFO,console
2.2.2实时读取本地文件到 HDFS 案例
1)案例需求:实时监控 Hive 日志,并上传到 HDFS 中
2)创建 flume-file-hdfs.conf 文件
[atguigu@hadoop102 job]$ touch flume-file-hdfs.conf
注:要想读取 Linux 系统中的文件,就得按照 Linux 命令的规则执行命令。由于 Hive 日
志在 Linux 系统中所以读取文件的类型选择:exec 即 execute 执行的意思。表示执行 Linux
命令来读取文件。
[atguigu@hadoop102 job]$ vim flume-file-hdfs.conf
添加如下内容
(下面中的tail -F:持续监控后面的文件,而-f则是只监听一次)
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
a2.sources.r2.shell = /bin/bash -c
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop102:9000/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs- #是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k2.hdfs.batchSize = 1000
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 600
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k2.hdfs.rollCount = 0
#最小冗余数
a2.sinks.k2.hdfs.minBlockReplicas = 1
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2
2.执行监控配置
[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf
3.开启 Hadoop 和 Hive 并操作 Hive 产生日志
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh
[atguigu@hadoop102 hive]$ bin/hive hive (default)>
bin/flume-ng agent --conf conf/ --name a3 --conf-file job/flume-dir-hdfs.conf