一、概率的公理化表述:
我们在前面的随机事件的定义都是比较口语化的:随机试验的结果就是随机事件嘛。今天我们给出公理化的定义:随机事件都要满足下面三个公理:
- 非负性:对于任意事件 A A A,有: 0 ≤ P ( A ) ≤ 1 0≤P(A) ≤1 0≤P(A)≤1;
- 规范性: P ( Ω ) = 1 P(Ω) = 1 P(Ω)=1;
- 可加性:对于两两互斥的事件 A 1 , A 2 , ⋯ , A n A_1, A_2,\cdots, A_n A1,A2,⋯,An,有: P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^nA_i) =\sum_{i=1}^nP(A_i) P(⋃i=1nAi)=∑i=1nP(Ai)
二、概率的八大性质及其证明
下面是概率的八大性质以及部分证明:
【性质一】非负性:对于任意事件
A
A
A,有:
0
≤
P
(
A
)
≤
1
0≤P(A) ≤1
0≤P(A)≤1;
【性质二】规范性: P ( Ω ) = 1 P(Ω) = 1 P(Ω)=1;
【性质三】可加性:若事件 A A A 与事件 B B B 互斥,则 P ( A + B ) = P ( A ) + P ( B ) P(A+B) = P(A)+P(B) P(A+B)=P(A)+P(B)
【性质四】
P
(
Φ
)
=
0
P(Φ) = 0
P(Φ)=0
证
明
\footnotesize\color {DarkOrchid}{证明}
证明:
A
=
A
+
Φ
A = A + Φ
A=A+Φ;因此,
P
(
A
)
=
P
(
A
+
Φ
)
P(A) = P(A + Φ)
P(A)=P(A+Φ),又由于事件
A
A
A 与空集
Φ
Φ
Φ 是互斥的,因此:
P
(
A
)
=
P
(
A
)
+
P
(
Φ
)
P(A) = P(A) + P(Φ)
P(A)=P(A)+P(Φ),故
P
(
Φ
)
=
0
P(Φ) = 0
P(Φ)=0
这里补充一个小插曲:我们知道,不可能事件的概率是0,那么概率为0的事件是不是不可能事件呢?
答案是:No!!以几何概型为例,我们朝一根线段上扔一个质点,质点落在点(1,0)上的概率是0吧,因为(1,0)没有长度啊,所以概率是0,但是这件事不是不可能的噢,没准一扔刚好就是在那个(1,0)上了呢对吧。
【性质五】若:
A
⊂
B
A \sub B
A⊂B,则
P
(
A
)
≤
P
(
B
)
P(A) ≤ P(B)
P(A)≤P(B)
证
明
\footnotesize\color {DarkOrchid}{证明}
证明:我们知道
B
=
B
−
A
+
A
=
(
B
−
A
)
+
A
B = B-A+A = (B-A)+A
B=B−A+A=(B−A)+A,那么我们发现:事件
(
B
−
A
)
(B-A)
(B−A) 和事件
A
A
A 是互斥事件,因此右完全可加定理【性质三】可知:
P
(
B
)
=
P
(
B
−
A
)
+
P
(
A
)
P(B) = P(B-A)+P(A)
P(B)=P(B−A)+P(A)
又由概率的非负性可知:
P
(
B
−
A
)
≥
0
P(B-A) ≥ 0
P(B−A)≥0,因此得出:
P
(
B
)
≥
P
(
A
)
P(B) ≥ P(A)
P(B)≥P(A)
【性质六】对于任意事件,
P
(
A
)
=
1
−
P
(
A
ˉ
)
P(A) = 1-P(\bar{A})
P(A)=1−P(Aˉ)
证
明
\footnotesize\color {DarkOrchid}{证明}
证明:由于
A
+
A
ˉ
=
Ω
A + \bar{A} = Ω
A+Aˉ=Ω,因此:
P
(
A
+
A
ˉ
)
=
P
(
Ω
)
=
1
P(A+\bar{A}) = P(Ω) = 1
P(A+Aˉ)=P(Ω)=1,又因为
A
A
A 与
A
ˉ
\bar{A}
Aˉ 是互斥事件,因此:
P
(
A
)
+
P
(
A
ˉ
)
=
1
P(A) + P(\bar{A}) = 1
P(A)+P(Aˉ)=1。因此:
P
(
A
)
=
1
−
P
(
A
ˉ
)
P(A) = 1-P(\bar{A})
P(A)=1−P(Aˉ)
【性质七】对于任意事件,都有:
P
(
A
−
B
)
=
P
(
A
)
−
P
(
A
B
)
P(A-B) = P(A) - P(AB)
P(A−B)=P(A)−P(AB)
证
明
\footnotesize\color {DarkOrchid}{证明}
证明:我们从一个新的角度去可视化理解这个证明。
我们知道任意的两个事件,无非就是三个关系—— 互斥、包含和相交。我们看看:

我们看看第一种:互斥的情况,假如 A , B A, B A,B 互斥, A − B A - B A−B 表示从 A A A 中减去 B B B 的部分,可是这俩事件都没有公共部分,因此 A − B = A A - B = A A−B=A,即 P ( A − B ) = P ( A ) P(A-B) = P(A) P(A−B)=P(A),对应地, P ( A B ) = 0 P(AB) = 0 P(AB)=0。因此,就有: P ( A − B ) = P ( A ) − P ( A B ) P(A - B) = P(A) - P(AB) P(A−B)=P(A)−P(AB)
我们接着看第二个情况:包含,如果是
A
A
A 包含
B
B
B,那么
A
−
B
A-B
A−B 就是货真价实的从
A
A
A 中减去
B
B
B,这是不是相当于从
A
A
A 中减去
A
,
B
A, B
A,B 的公共部分?因为
A
B
=
B
AB = B
AB=B!也就是:
A
−
B
=
A
−
A
B
A-B = A-AB
A−B=A−AB,那么就有:
P
(
A
)
=
P
(
A
−
A
B
+
A
B
)
=
P
(
A
−
A
B
)
+
P
(
A
B
)
=
P
(
A
−
B
)
+
P
(
A
B
)
P(A) = P(A-AB+AB) = P(A-AB)+P(AB) = P(A-B) + P(AB)
P(A)=P(A−AB+AB)=P(A−AB)+P(AB)=P(A−B)+P(AB)
即:
P
(
A
−
B
)
=
P
(
A
)
−
P
(
B
)
P(A-B) = P(A) - P(B)
P(A−B)=P(A)−P(B)
我们再来看看最后一种情况:相交。这俩事件相交,那么
A
−
B
A -B
A−B 依然表示的是从
A
A
A 中减去
B
B
B 的成分,而
A
A
A 中
B
B
B 的成分就是
A
B
AB
AB!即:
A
−
A
B
=
A
−
B
A-AB = A-B
A−AB=A−B,那么
P
(
A
)
=
P
(
A
−
A
B
+
A
B
)
=
P
(
A
−
A
B
)
+
P
(
A
B
)
=
P
(
A
−
B
)
+
P
(
A
B
)
P(A) = P(A-AB+AB) = P(A-AB)+P(AB) = P(A-B) + P(AB)
P(A)=P(A−AB+AB)=P(A−AB)+P(AB)=P(A−B)+P(AB)
所以稍作变换我们就可以得出:
P
(
A
−
B
)
=
P
(
A
)
−
P
(
A
B
)
P(A-B) = P(A) - P(AB)
P(A−B)=P(A)−P(AB)
【性质八】加法原理:对于任意的
A
,
B
A, B
A,B,
P
(
A
+
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A+B) = P(A)+P(B)-P(AB)
P(A+B)=P(A)+P(B)−P(AB)
证
明
\footnotesize\color {DarkOrchid}{证明}
证明:我们知道,
A
∪
B
=
A
+
B
−
A
B
A∪B = A+B-AB
A∪B=A+B−AB(因为
A
B
AB
AB 加多了一次,要减掉)
因此,
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
−
A
B
)
P(A∪B) = P(A)+P(B-AB)
P(A∪B)=P(A)+P(B−AB),对于
P
(
B
−
A
B
)
P(B-AB)
P(B−AB),我们用性质七:
P
(
B
−
A
B
)
=
P
(
B
)
−
P
(
A
B
)
P(B-AB) = P(B) - P(AB)
P(B−AB)=P(B)−P(AB)
因此,我们得到:
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A∪B) = P(A)+P(B) - P(AB)
P(A∪B)=P(A)+P(B)−P(AB)
扩展:( i m p o r t a n t important important): P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) P(A+B+C) = P(A)+P(B)+P(C) - P(AB)-P(BC)-P(AC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)