【概率论与数理统计 Probability and Statistics 2】—— 概率的公理化以及概率的八大性质

一、概率的公理化表述:

我们在前面的随机事件的定义都是比较口语化的:随机试验的结果就是随机事件嘛。今天我们给出公理化的定义:随机事件都要满足下面三个公理:

  1. 非负性:对于任意事件 A A A,有: 0 ≤ P ( A ) ≤ 1 0≤P(A) ≤1 0P(A)1
  2. 规范性: P ( Ω ) = 1 P(Ω) = 1 P(Ω)=1
  3. 可加性:对于两两互斥的事件 A 1 , A 2 , ⋯   , A n A_1, A_2,\cdots, A_n A1,A2,,An,有: P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^nA_i) =\sum_{i=1}^nP(A_i) P(i=1nAi)=i=1nP(Ai)

二、概率的八大性质及其证明

下面是概率的八大性质以及部分证明:
【性质一】非负性:对于任意事件 A A A,有: 0 ≤ P ( A ) ≤ 1 0≤P(A) ≤1 0P(A)1

【性质二】规范性: P ( Ω ) = 1 P(Ω) = 1 P(Ω)=1

【性质三】可加性:若事件 A A A 与事件 B B B 互斥,则 P ( A + B ) = P ( A ) + P ( B ) P(A+B) = P(A)+P(B) P(A+B)=P(A)+P(B)

【性质四】 P ( Φ ) = 0 P(Φ) = 0 P(Φ)=0
证 明 \footnotesize\color {DarkOrchid}{证明} A = A + Φ A = A + Φ A=A+Φ;因此, P ( A ) = P ( A + Φ ) P(A) = P(A + Φ) P(A)=P(A+Φ),又由于事件 A A A 与空集 Φ Φ Φ 是互斥的,因此: P ( A ) = P ( A ) + P ( Φ ) P(A) = P(A) + P(Φ) P(A)=P(A)+P(Φ),故 P ( Φ ) = 0 P(Φ) = 0 P(Φ)=0

这里补充一个小插曲:我们知道,不可能事件的概率是0,那么概率为0的事件是不是不可能事件呢?
答案是:No!!以几何概型为例,我们朝一根线段上扔一个质点,质点落在点(1,0)上的概率是0吧,因为(1,0)没有长度啊,所以概率是0,但是这件事不是不可能的噢,没准一扔刚好就是在那个(1,0)上了呢对吧。

【性质五】若: A ⊂ B A \sub B AB,则 P ( A ) ≤ P ( B ) P(A) ≤ P(B) P(A)P(B)
证 明 \footnotesize\color {DarkOrchid}{证明} :我们知道 B = B − A + A = ( B − A ) + A B = B-A+A = (B-A)+A B=BA+A=(BA)+A,那么我们发现:事件 ( B − A ) (B-A) (BA) 和事件 A A A 是互斥事件,因此右完全可加定理【性质三】可知: P ( B ) = P ( B − A ) + P ( A ) P(B) = P(B-A)+P(A) P(B)=P(BA)+P(A)
又由概率的非负性可知: P ( B − A ) ≥ 0 P(B-A) ≥ 0 P(BA)0,因此得出: P ( B ) ≥ P ( A ) P(B) ≥ P(A) P(B)P(A)

【性质六】对于任意事件, P ( A ) = 1 − P ( A ˉ ) P(A) = 1-P(\bar{A}) P(A)=1P(Aˉ)
证 明 \footnotesize\color {DarkOrchid}{证明} :由于 A + A ˉ = Ω A + \bar{A} = Ω A+Aˉ=Ω,因此: P ( A + A ˉ ) = P ( Ω ) = 1 P(A+\bar{A}) = P(Ω) = 1 P(A+Aˉ)=P(Ω)=1,又因为 A A A A ˉ \bar{A} Aˉ 是互斥事件,因此: P ( A ) + P ( A ˉ ) = 1 P(A) + P(\bar{A}) = 1 P(A)+P(Aˉ)=1。因此: P ( A ) = 1 − P ( A ˉ ) P(A) = 1-P(\bar{A}) P(A)=1P(Aˉ)

【性质七】对于任意事件,都有: P ( A − B ) = P ( A ) − P ( A B ) P(A-B) = P(A) - P(AB) P(AB)=P(A)P(AB)
证 明 \footnotesize\color {DarkOrchid}{证明} :我们从一个新的角度去可视化理解这个证明。
我们知道任意的两个事件,无非就是三个关系—— 互斥、包含和相交。我们看看:

我们看看第一种:互斥的情况,假如 A , B A, B A,B 互斥, A − B A - B AB 表示从 A A A 中减去 B B B 的部分,可是这俩事件都没有公共部分,因此 A − B = A A - B = A AB=A,即 P ( A − B ) = P ( A ) P(A-B) = P(A) P(AB)=P(A),对应地, P ( A B ) = 0 P(AB) = 0 P(AB)=0。因此,就有: P ( A − B ) = P ( A ) − P ( A B ) P(A - B) = P(A) - P(AB) P(AB)=P(A)P(AB)

我们接着看第二个情况:包含,如果是 A A A 包含 B B B,那么 A − B A-B AB 就是货真价实的从 A A A 中减去 B B B,这是不是相当于从 A A A 中减去 A , B A, B A,B 的公共部分?因为 A B = B AB = B AB=B!也就是: A − B = A − A B A-B = A-AB AB=AAB,那么就有: P ( A ) = P ( A − A B + A B ) = P ( A − A B ) + P ( A B ) = P ( A − B ) + P ( A B ) P(A) = P(A-AB+AB) = P(A-AB)+P(AB) = P(A-B) + P(AB) P(A)=P(AAB+AB)=P(AAB)+P(AB)=P(AB)+P(AB)
即: P ( A − B ) = P ( A ) − P ( B ) P(A-B) = P(A) - P(B) P(AB)=P(A)P(B)

我们再来看看最后一种情况:相交。这俩事件相交,那么 A − B A -B AB 依然表示的是从 A A A 中减去 B B B 的成分,而 A A A B B B 的成分就是 A B AB AB!即: A − A B = A − B A-AB = A-B AAB=AB,那么 P ( A ) = P ( A − A B + A B ) = P ( A − A B ) + P ( A B ) = P ( A − B ) + P ( A B ) P(A) = P(A-AB+AB) = P(A-AB)+P(AB) = P(A-B) + P(AB) P(A)=P(AAB+AB)=P(AAB)+P(AB)=P(AB)+P(AB)
所以稍作变换我们就可以得出: P ( A − B ) = P ( A ) − P ( A B ) P(A-B) = P(A) - P(AB) P(AB)=P(A)P(AB)

【性质八】加法原理:对于任意的 A , B A, B A,B P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B) = P(A)+P(B)-P(AB) P(A+B)=P(A)+P(B)P(AB)
证 明 \footnotesize\color {DarkOrchid}{证明} :我们知道, A ∪ B = A + B − A B A∪B = A+B-AB AB=A+BAB(因为 A B AB AB 加多了一次,要减掉)
因此, P ( A ∪ B ) = P ( A ) + P ( B − A B ) P(A∪B) = P(A)+P(B-AB) P(AB)=P(A)+P(BAB),对于 P ( B − A B ) P(B-AB) P(BAB),我们用性质七: P ( B − A B ) = P ( B ) − P ( A B ) P(B-AB) = P(B) - P(AB) P(BAB)=P(B)P(AB)
因此,我们得到: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A∪B) = P(A)+P(B) - P(AB) P(AB)=P(A)+P(B)P(AB)

扩展:( i m p o r t a n t important important): P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) P(A+B+C) = P(A)+P(B)+P(C) - P(AB)-P(BC)-P(AC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值