【你也能看得懂的电磁场与电磁波系列连载 31】

在上一个连载里面,我们学习了均匀平面波从理想介质入射到理想导体的情况,并且得出了一个结论:平面波射向理想导体是全反射,并且入射波和反射波的叠加是一个纯驻波。 我们也计算出了波节和波腹的位置,那么在今天的连载里面,我们将学习均匀平面波从理想介质入射到理想介质的情况。


首先,很明显的一件事情:从理想介质入射到理想介质,那肯定是既有反射波又有折射波的。情况如下所示:
在这里插入图片描述

大家看这个图是不是觉得似曾相识?这不就是我们当时推导反射定律和折射定律时用的图嘛!只不过现在两边都是理想介质,即: γ 1 = j β 1 , γ 2 = j β 2 γ_1 = jβ_1, γ_2 = jβ_2 γ1=jβ1,γ2=jβ2,且波阻抗 η = μ ε η = \sqrt{\frac{μ}{ε}} η=εμ 是一个实数

同时,理想介质入射到理想介质那肯定也是遵循反射定律和折射定律的,即:$$
在这里插入图片描述


下面大家应该都知道我要干嘛了:首先表示入射电场(用有效值矢量表示)
在这里插入图片描述
下面表示反射电场:
在这里插入图片描述
下面我们就可以得到介质1中的合成电场:
在这里插入图片描述
下面我们就看它是驻波、行波还是什么其他的形式了。不过这个式子不方便观察,我们换一种形式:
在这里插入图片描述
进一步,有:
在这里插入图片描述
那么我们发现,这个合成电场,能够拆分成两个部分,且每一项都有明确的意义:第一项表示形波(因为它还带有那个指数项);第二项就表示驻波。

因此,我们得到了第一个结论 —— 理想介质入射到理想介质,入射波和反射波的叠加是一个行驻波


下面我们还是需要分析一下波腹和波节的位置,还记得什么是波节吗:合成波振幅最小的位置。所以,我们现在就需要先看看这个合成电场 E 1 ˉ ˙ \dot{\bar{E_1}} E1ˉ˙的振幅。我们首先对这个合成波再做一下变化:

在这里插入图片描述
下面我们计算它的模值:
在这里插入图片描述
我们知道,如果要计算波节,就需要找幅值的最小值,那么这个最小值现在可不是单纯由 cos 决定了,因为它前面的系数 R 的正负也会影响:

  1. 如果 R > 0;那么 cos 取最小值-1时,整个幅值就是最小的
  2. 如果 R < 0;那么 cos 取最大值 +1 时,整个幅值是最大的.

那么,我们先看看情况1:如果 R > 0,根据:
在这里插入图片描述
那么应该是 η 2 > η 1 η_2 > η_1 η2>η1,此时电场波腹点(令 cos 最大)的求法是:
在这里插入图片描述
电场波节点的求法是:
在这里插入图片描述
我们看看这个情况下,合成电场和合成磁场(行驻波)波节、波腹的分布情况:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200712093439222.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDU4NjQ3Mw==,size_16,color_FFFFFF,t_70
当 R<0时波节波腹的求法类似,这里不再赘述了。


最后值得一提的是,我们也常常用驻波系数来衡量反射的程度:
在这里插入图片描述
因为在微波测量里面,这个驻波系数是比较容易测出来的。那么细心的读者会发现了,我这里的 R 带上了绝对值。这意味着 R 还可能是负数了。那么,有什么办法可以判断 R 的正负呢?

这里我给大家支一招:如果在分界面的位置,电场位于波腹,那么就说明 R > 0 ;如果在分界面的位置电场位于波节,那么说明 R < 0。【注:当然看分界面的磁场情况也是可以的,只不过就是和电场反过来而已】


好啦!这就是本次连载的全部内容了,今天我们学习了理想介质到理想介质的垂直入射。那么在下一个连载我们将看一看多层介质分界面的垂直入射情况。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值