概述
金属齿轮作为机械传动系统中的关键部件,质量直接影响整个设备的性能与可靠性。随着工业自动化的发展,传统的人工检测方法逐渐暴露出效率低、准确性差等问题。AI技术的引入,为金属齿轮的缺陷检测提供了新的解决方案。
金属齿轮缺陷种类
金属齿轮可能出现的缺陷主要包括:
-
表面缺陷 :划痕、凹坑、裂纹、腐蚀等,这些缺陷可能导致齿轮的强度降低和磨损加剧。
-
几何缺陷 :齿形不良、齿距不均、齿轮同心度差等,可能影响齿轮的啮合性能。
-
材料缺陷 :内部缺陷如气孔、夹杂物等,可能导致齿轮在高负荷下失效。
AI 检测流程
-
图像采集:采集正常和有缺陷的齿轮图像数据。
-
数据预处理:对数据进行标注,标识出缺陷类型和位置,去除噪声、重复和不相关的数据,确保数据质量。
-
模型训练:使用标注好的数据集对模型进行训练,调整训练参数以优化性能。
-
模型测试:对测试集数据进行验证,确保模型的稳定性和泛化能力。
-
模型部署:将训练好的模型部署到实际应用环境中,包括云端或本地服务器。
AI 检测方案
此齿轮检测方案基于