Python数据分析辅助审计工作

本文介绍了如何使用Python进行数据分析辅助审计工作,针对管理费用异常波动问题,通过主成分分析和层次聚类找出关键影响因素。首先整理数据结构,然后进行层次聚类减少变量,接着应用主成分分析找到主要影响科目,以此提高审计效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 摘要

审计中遇到管理费用年度内异常波动的问题,依据审计准则,可采用“询问+检查”或者“询问+实质性分析程序”;通常都是采用前一种,但是在时间有限的情况下,实质性分析程序也是可以做到的。

  • 问题描述

一般来说,正常经营没有重大业务变动的公司,其管理费用每月的数额应当相差不大,如果出现波动较大的情况则可能是有某些较大的支出,如果超过了重要性水平则应当引起重视,将原因调查清楚。
我在审计中遇到了上述问题,具体是某上市公司的重要组成部分的管理费用的审计,为了照顾项目组紧张的时间,我执行了“询问相关人员+对管理费用发生额实施实质性分析程序”的审计程序。
问题的关键在于如何具体分析。

  • 建立模型

导出的管理费用明细账的数据结构如下:
管理费用GL(记账凭证编号,日期,摘要,科目名称,借方金额,贷方金额)
将其整理成如下数据结构的:
管理费用GL2(记账凭证编号,科目1借方金额,科目2借方金额,……,科目n借方金额)
转换之后的管理费用GL2暂且称为“原始数据阵”。经过这样转换以后,保证了两个二维表金额合计相等,同时可以满足数据分析的要求——每行为一条记录,每列为一个字段,每列(每个科目的会计记录)都可以看做是该数据矩阵的一个变量(列向量)。
我的分析思路就是采用方差最大化法进行主成分分析,找到对原始数据矩阵的方差影响最大的第一主成分,第一主成分是原始数据阵中各变量的线性组合,最大的系数&#x

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值