2019.7.2 JZ DAY8总结

D A Y 8 DAY8 DAY8

T 1 T1 T1
发 牌 发牌

Description
在一些扑克游戏里,如德州扑克,发牌是有讲究的。一般称呼专业的发牌手为荷官。荷官在发牌前,先要销牌(burn card)。所谓销牌,就是把当前在牌库顶的那一张牌移动到牌库底,它用来防止玩家猜牌而影响游戏。
假设一开始,荷官拿出了一副新牌,这副牌有N张不同的牌,编号依次为1到N。由于是新牌,所以牌是按照顺序排好的,从牌库顶开始,依次为1, 2,……直到N,N号牌在牌库底。为了发完所有的牌,荷官会进行N次发牌操作,在第i次发牌之前,他会连续进行Ri次销牌操作,Ri由输入给定。请问最后玩家拿到这副牌的顺序是什么样的?
举个例子,假设N = 4,则一开始的时候,牌库中牌的构成顺序为{1, 2, 3, 4}。
假设R1=2,则荷官应该连销两次牌,将1和2放入牌库底,再将3发给玩家。目前牌库中的牌顺序为{4, 1, 2}。
假设R2=0,荷官不需要销牌,直接将4发给玩家,目前牌库中的牌顺序为{1,2}。
假设R3=3,则荷官依次销去了1, 2, 1,再将2发给了玩家。目前牌库仅剩下一张牌1。
假设R4=2,荷官在重复销去两次1之后,还是将1发给了玩家,这是因为1是牌库中唯一的一张牌。

Input
第 1行,一个整数 N,表示牌的数量。
第 2行到第 N + 1行,在第 i + 1行,有一个整数Ri, 0≤Ri<N

Output
第 1行到第N行:第 i行只有一个整数,表示玩家收到的第 i张牌的编号 。

Sample Input
4
2
0
3
2

Sample Output
3
4
2
1

Data Constraint

考场阅览完所有题目后感觉这题可做性比较高,于是开始先敲了一个暴力,然后从我尝试着手推规律,因为我猜测这是个类似于约瑟夫的规律题。大概想了整整1.5h吧,真的是不明白想来想去一直无法打破n2的魔咒,唉。正解是线段树。这点其实我考场想到了,但由于我没有深入思考需要维护什么值,然后就把自己hack掉了。正解就是权值线段树求整体的第K大,fine。
AC Code:

#include <cstdio>
using namespace std;

const int maxn = 7e5 + 10;
int n,now = 0,t[maxn * 3];

int read()
{
	int x = 0,w = 1;
	char ch = getchar();
	while (ch < '0' || ch > '9') {if (ch == '-') w = -1;ch = getchar();}
	while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0';ch = getchar();}
	return x * w;
}

void build(int x,int l,int r)
{
	if (l == r) 
	{
		t[x] = 1;
		return;
	}
	int mid = (l + r) >> 1;
	build(x << 1,l,mid);
	build(x << 1 | 1,mid + 1,r);
	t[x] = r - l + 1;
}

int query(int x,int l,int r,int k)
{
	t[x] --;
	int mid = (l + r) >> 1;
	if (l == r) return l; else 
	return k <= t[x << 1] ? query(x << 1,l,mid,k) : query(x << 1 | 1,mid + 1,r,k - t[x << 1]);
}

int main()
{
	n = read();
	build(1,1,n);
	for (int i = n,a; i >= 1; i --)
	{
		a = read();
		now += a;
		now %= i;
		printf("%d\n",query(1,1,n,now + 1));
	}
	return 0;
}

这题考场就感觉是水题,于是花了大量的时间,可是最后还是只拿了10分的暴力分,心态直接爆炸,导致今天发挥失常。


T 2 T2 T2
阶 乘 字 符 串 阶乘字符串

Description
给定一个由前n个小写字母组成的串S。
串S是阶乘字符串当且仅当前n个小写字母的全排列(共n!种)都作为S的子序列(可以不连续)出现。
由这个定义出发,可以得到一个简单的枚举法去验证,但是它实在太慢了。所以现在请你设计一个算法,在1秒内判断出给定的串是否是阶乘字符串。

Input
输入第1行一个整数T,表示这个文件中会有T组数据。
接下来分T个块,每块2行:
第1行一个正整数n,表示S由前n个小写字母组成。
第2行一个字符串S。

Output
对于每组数据,分别输出一行。每行是YES或者NO,表示该数据对应的串S是否是阶乘字符串。

Sample Input
2
2
bbaa
2
aba

Sample Output
NO
YES

Data Constraint

Hint
样例解释:
第一组数据中,ab这个串没有作为子序列出现。

这题其实完全可以暴力水到124三个点,可是由于第一题耗时太多再加上心态爆炸,直接放弃治疗。正解是状压dp,虽然码量很小,但我觉得还是蛮难想到的,特别是对于我这种dp困难户,真的dp方面还需要勤加练习啊。本题设 f [ i ] f[i] f[i]表示i集合中所有的全排列都出现时的最小位置,然后还需要一个辅助转移的数组 n e x t [ i ] [ j ] next[i][j] next[i][j]表示在i之后第一次出现字母j的位置。然后转移 f [ i ] = m i n ( f [ i ] , n e x t [ f [ i ( 1 < < j ) ] ] [ j ] ) f[i] = min(f[i],next[f[i ^ (1 << j)]][j]) f[i]=min(f[i],next[f[i(1<<j)]][j]),感觉理解得还是有点勉强,不过还行,还得打好dp基础。

#include <cstdio>
#include <cstring>
using namespace std;

int T,n,len,next[500][30],f[1 << 22];
char ch[500];

int min(int a,int b) {return a < b ? a : b;}

int main()
{
	scanf("%d",&T);
	while (T --)
	{
		scanf("%d",&n);
		scanf("%s",ch + 1);
		if (n > 21) {puts("NO"); continue;}
		len = strlen(ch + 1);
		memset(next,-1,sizeof next);
		for (int i = 1; i <= len; i ++)
		{
			for (int j = 0; j < n; j ++)
				next[i][j] = next[i - 1][j];
			next[i][ch[i] - 'a']  = i; 
		}
		for (int i = 0; i < (1 << 22); i ++) f[i] = len;
		for (int i = 1; i < (1 << n); i ++)
			for (int j = 0; j < n; j ++)
			{
				if (f[i ^ (1 << j)] == -1) {f[i] = -1;continue;}
				if (i & (1 << j))  f[i] = min(f[i],next[f[i ^ (1 << j)]][j]);
			}
		if (f[(1 << n) - 1] < 0) puts("NO"); else puts("YES");
	}
	return 0;
}

T 3 T3 T3
超 级 跳 马 超级跳马

Description

Input
仅有一行,包含两个正整数n, m,表示棋盘的规模。

Output
仅有一行,包含一个整数,即跳法种数mod 30011。

Sample Input
3 5

Sample Output
10

Data Constraint
对于10%的数据,1 ≤ n ≤ 10,2 ≤ m ≤ 10;
对于50%的数据,1 ≤ n ≤ 10,2 ≤ m ≤ 10^5;
对于80%的数据,1 ≤ n ≤ 10,2 ≤ m ≤ 10^9;
对于100%的数据,1 ≤ n ≤ 50,2 ≤ m ≤ 10^9。

还好考场先敲了这道题,拿到了10分的深搜暴力,其实考场的时候最原始的dp方程是想到了的,可是因为数据范围过大,会MLE直接hack掉了自己的想法。考后正解是建立在该基础之上的。说实话这题的优化我还是知道个一知半解,可是通过这道题我复习了矩阵乘法,以及自己从来不敢接触的重载运算符,鸣谢ZJL大佬的指导,让我初步认识到了重载运算符的优越性以及基本语法。

#include <cstdio>
#include <cstring>
#include <algorithm> 
using namespace std;

const int mo = 30011;
int n,m;

struct matrix
{
	int num[110][110];
	matrix operator * (matrix a)
	{
		matrix b;
		memset(b.num,0,sizeof b.num);
		for (int i = 1; i <= 2 * n; i ++)
			for (int j = 1; j <= 2 * n; j ++)
				for (int k = 1; k <= 2 * n; k ++)
					b.num[i][j] = (b.num[i][j] + num[i][k] * a.num[k][j] % mo) % mo;
		return b;
	}
} I,A,B;

matrix pow(matrix a,int b)
{
	matrix res;
	for (int i = 1; i <= n * 2; i ++) res.num[i][i] = 1;
	while (b)
	{
		if (b & 1) res = res * a;
		a = a * a;
		b >>= 1;
	}
	return res;
}

int main()
{
	scanf("%d%d",&n,&m);
	for (int i = 1; i <= n; i ++)
		I.num[i][i] = I.num[i + n][i] = I.num[i][i + n] = 1;
	for (int i = 1; i < n; i ++)
		I.num[i][i + 1] = I.num[i + 1][i] = 1;
	A = pow(I,m - 2);
	B = A * I;
	printf("%d",(B.num[1][n] - A.num[1][n << 1] + mo) % mo);
	return 0;
}

今天应该是最近几天考试排名最差的一次,说也奇怪,感觉自己睡眠明明很充足,不知道为什么早上过来前一个小时就是很困,还得努力鸭。。。。
今天时间还较多,得赶快多巩固点算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值