基于图神经网络的EEG分类

摘要

图神经网络(GNN)越来越多地用于情绪识别、运动想象以及神经疾病等任务的脑电信号(EEG)分类。人们已经提出了一系列方法来设计基于GNN的分类器。因此,有必要对这些方法进行系统回顾和分类。本文对已发表的文献进行了详尽地检索,并总结了几种用于比较的类别。这些类别突出了各种方法之间的相似性和差异性。研究结果表明,频谱图卷积层比空间图卷积层的应用更广泛。此外,本研究确定了节点特征的标准形式,其中最流行的是原始EEG信号和微分熵,并概述了基于GNN的方法在EEG分类中的新兴趋势。

引言

脑电图(EEG)是一种用于记录脑电活动的非侵入性技术,在认知神经科学、临床诊断和脑机接口等领域有着广泛的应用。然而,脑电信号的分析存在诸多挑战,包括信噪比低、脑动力学引起的非平稳性以及信号的多变性。在这里,本文重点关注情绪识别、运动想象识别或神经系统疾病的脑电信号分类。

脑电分类中常用的特征提取方法有共空间模式、小波变换和Hilbert-Huang变换等。这些方法旨在从脑电信号中提取有意义的特征,例如利用功率谱密度(PSD)等关键特征来表征大脑状态。然而,依靠这些手动定义的特征来训练机器学习分类器存在几个局限性。特征选择中的主观性和偏差,以及耗时的特征工程和选择过程,限制了可扩展性和泛化性。为了克服这些局限性,需要自动化的特征提取方法来提高效率,减少偏差,并增强分类器对不同脑电数据集的适应性。

深度学习架构,如卷积神经网络(CNN)和长短期记忆网络(LSTM),也被用于EEG分析。然而,它们在有效捕捉电极之间的空间依赖性和处理脑电信号的时间动态方面面临挑战。对脑电数据中复杂的时序和空间关系进行建模对于更准确的分类和分析至关重要。

网络神经科学通过将信号构建为图的方式,为EEG建模提供了一种替代方法。大脑是一个复杂的网络结构,神经元之间形成连接并相互通信。将EEG数据以图的形式进行分析,使得可以研究网络属性,包括功能连接性,从而为大脑功能和功能障碍提供新的见解。基于图的分析有助于检查网络特征、节点重要性、社区结构和信息流动,同时也为理解大脑的组织和动态提供了新的视角。这些基于图论的特征已被证明在EEG分类中具有强大的预测能力。然而,这些特征与上述基于传统EEG分析方法的手动定义特征具有相同的局限性。

图神经网络(GNN)是网络神经科学框架中建模神经生理数据(如EEG)的强大工具,专门用于处理图形结构数据。它们能够有效地利用脑电数据中的空间结构来提取特征、发现模式,并根据不同电极之间的复杂相互作用进行预测。

图神经网络概述

图被广泛用于捕捉各个领域中的复杂关系和依赖关系,例如社交网络、生物网络和知识图谱等。近年来,图分类问题引起了广泛关注,其目标是为整个图分配一个标签。图神经网络(GNNs)通过将卷积的概念从欧氏结构的数据扩展到图结构的数据,为该问题提供了一个有前景的解决方案。GNNs已成功应用于多个领域,如生物学、生物信息学、网络神经科学、自然语言处理等。

在图分类问题中,输入是一组具有节点集、边集和节点特征的图。设G=(V,E,H)表示特征图,其中V表示节点集,E表示连接节点的边集,H表示D维节点特征V×D矩阵。在脑电信号中,EEG通道是节点,边表示节点对之间的结构或功能连接。每个图G都与一个标签y相关联,表示其类别。目标是学习一个函数f(G)→y,该函数能够根据输入的图G预测其类别标签y。图1展示了用于EEG分类的GNN模型的总体结构。

图1.用于EEG分类的GNN模型的总体架构。

与其他深度学习模型相比,GNNs具有几个优势。首先,GNNs专门为图结构输入设计的。这意味着与需要固定大小输入的传统深度学习模型(如CNN)相比,GNNs可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值