精读论文4——《Deep learning for electroencephalogram (EEG) classification tasks: a review》

该文章全面回顾了深度学习在 EEG 分类任务中的应用,包括运动想象、脑力工作、癫痫检测、睡眠阶段评分和事件相关电位等任务。预处理方法涵盖手动和自动伪影去除,输入形式多样,如计算特征、图像和原始信号值。此外,还探讨了深度学习架构的趋势。
摘要由CSDN通过智能技术生成

这篇文章是一篇关于用于EEG分类的深度学习方法的综述:发表在Journal of Neural Engineering 

Which EEG classification tasks have been explored with deep learning?

共有六种分类的任务:运动想象任务(Motor imagery tasks)、脑力工作任务(Mental workload tasks)、癫痫检测任务(Seizure detection tasks)、睡眠阶段评分任务(Sleep stage scoring tasks)、事件相关电位任务(Event related potential tasks)

Preprocessing methods

关于伪影去除的策略:不同的分类任务有不同的滤波范围,伪影去除的方法有四种:手动去除(独立主成分分析ICA或离散小波变换DWT的方法)、自动去除、不处理

 

What input formulations have been used for training the deep networks?

calculated features (计算特征), images (图像), the signal values (信号值)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值