1 图像分类
1.1 图像分类的定义
从已知的标签集合中为给定的输入图片选定一个类别标签
1.2 对图像处理的影响因素
视角、光照、尺度、遮挡、截断、类内形变、运动模糊、类别繁多
1.3 基于规则的分类方法
通过硬编码的方法识别物体或者其他类(困难)
已经做的尝试:图像–>边缘检测–>提取角点
1.4 数据驱动的图像分类方法
1)数据集构建
2)分类器设计与学习
①图像表示:
- 像素表示
- 全局特征表示(如GIST)
- 局部特征表示(如SIFT特征+词袋模型)
②分类模型:
- 近邻分类器
- 贝叶斯分类器
- 线性分类器
- 线性映射,将输入的图像特征映射为类别分数,输入图像与评估模板的匹配程度越高,分类器输出的分数就越高
- 定义、决策、矩阵表示、权值向量、决策边界
- 支撑向量机分类器
- 神经网络分类器
- 随机森林
- Adaboost
③优化方法:
-
一阶方法
- 梯度下降
- 随机梯度下降
- 小批量随机梯度下降
-
二阶方法
- 牛顿法
- BFGS
- L-BFGS
④训练过程:
- 数据集划分
- 数据预处理
- 数据增强
- 欠拟合与过拟合
- 减小算法复杂度
- 使用权重正则项
- 使用droput正则化
- 超参数调整
- 模型集成
⑥损失函数
- 是个函数,用于度量预测值与真实值的不一致成都,输出通常是绝对值
- 输出值作为反馈信号调整分类器参数,以此降低损失值,提升分类器的分类效果
- 损失函数的一般定义 L = 1 N \frac{1}{N} N1 ∑ i \sum\limits_{i} i∑L i _{i} i(f(x i _{i} i,W),y i _{i} i)
- 多类支撑向量机损失
- S
i
j
_{ij}
ij=f
j
_{j}
j(x
i
_{i}
i,w
j
_{j}
j,b
j
_{j}
j)=w
j
T
_{j}^{T}
jTx
i
{i}
i+b
j
_{j}
j
- j:类别标签,取值范围{1,2,…,c};
- w j _{j} j,b j _{j} j:第j哥类别分类器的参数;
- x i _{i} i:表示数据集中的第i个样本
- s i j _{ij} ij:第i个样本第j类别的预测分数
- s y i _{yi} yi:第i个样本真是类别的预测分数
- 第i个样本的多类支撑向量机损失定义如下:
L i _{i} i= ∑ j ≠ y i \sum\limits_{j≠yi} j=yi∑max(0,s i j − s y i _{ij}-s_{yi} ij−syi+1)
3)分类器决策
1.5 图像类型
1)二进制图像([0、1])
2)灰度图([0:255]*1)
3)彩色图像([0:255]*3)