农民约翰面临一个很可怕的事实,因为防范失措他存储的所有稻草给澳大利亚蟑螂吃光了,他将面临没有稻草喂养奶牛的局面。在奶牛断粮之前,约翰拉着他的马车到农民唐的农场中买一些稻草给奶牛过冬。已知约翰的马车可以装的下 C(1<=C<=5000)立方的稻草。
农民唐有 H(1<=H<=5000)捆体积不同的稻草可供购买,每一捆稻草有它自己的体积
(1<=Vi<=C)面对这些稻草约翰认真的计算如何充分利用马车的空间购买尽量多的稻草给他的奶牛过冬。
现在给定马车的最大容积 CC 和每一捆稻草的体积 Vi
,约翰如何在不超过马车最大容积的情况下买到最大体积的稻草?他不可以把一捆稻草分开来买。
输入格式
第一行两个整数,分别为 CC 和 HH。
第 2…H+12…H+1 行:每一行一个整数代表第 ii 捆稻草的体积 Vi
输出格式
一个整数,为约翰能买到的稻草的体积。
输出时每行末尾的多余空格,不影响答案正确性
样例输入
7 3
2
6
5
样例输出
7
01背包模板
题意:
最大的容量可以买到稻草的体积;
套用模板即可
Accept Code :
#include <stdio.h>
#include <string.h>
#define max(a,b) a>b?a:b
int v[5010];
int dp[50100];
int main()
{
int n,m,i,j,k;
while(scanf("%d%d", &m,&n)!=EOF)
{
memset(dp,0,sizeof(dp));
for(i=1; i<=n; i++)
scanf("%d", &v[i]);
for(i=1; i<=n; i++)
{
for(j=m; j>=v[i]; j--)
{
dp[j]=max(dp[j],dp[j-v[i]]+v[i]);
}
}
printf("%d\n", dp[m]);
}
return 0;
}