对深度学习中的归一化技术的思考与总结

何为归一化

一般意义上的归一化指的就是将不同scale的特征,基于它们各自的均值和标准差进行值压缩。处理后的值具有0均值和单位方差。
在这里插入图片描述

为何需要归一化

归一化通常用于解决不同特征的scale差异过大导致参数训练困难的问题。通常情况下,如果我们不对不同scale的特征进行处理而直接使用梯度下降的方法去进行优化,会导致不同scale的特征权值更新优化的方向不均衡的情况发生。举个简单的例子,假设我们只有两个特征f1f2。其中f1的scale很小,范围在10-20之间,而f2的scale相对较大,范围在100-200之间。w1w2分别对应它们的权重。那么由于特征f2的scale较大的缘故,w2一点微小的变化就会对最终结果产生巨大的影响,也会使损失函数的结果产生巨大的变化。体现在下图中就是w2 维度上的等loss曲线分布密集,而w1维度上的等loss曲线分布稀疏。在这里插入图片描述
显然,这样的loss曲线分布会导致从图中任意的一个起始点到最终的loss最小值点的优化过程非常缓慢,因为我们需要配合f2这个大scale的数值而选择比较小的学习率,不然非常容易产生优化过冲而一直到不了loss最小值点。

然而࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值