MIT学习笔记-Linear Algebra(一)

Teacher:Gilbert Strang
The text of the course: Introduction to Linear Algebra
Website:web.mit.edu/18.06,which got a lot of exercise from the past MATLAB codes, the syllabus for the course

class1 and class2

方程组的几何解释

画了两个图,分别表示col和row形式。row就是用正常的方程组写,然后解代表直线(二维)的交点。而col是vector相加的形式,即linear combination(这表明矩阵的col代表vector)。

elimination消元法

Can I solve Ax=b for every b?如果有解的话,就可以用消元法解出来。同样的问法 Do the linear combination of the columns fill three dimensional space?这意味着方程组的解b代表着线性空间的点。
matrix multiply 方法1、[2 5;1 3]【1 2】=1【1 2】+2【1 3】。
Ax is comb of columns of A数据量大的时候这么理解更方便。
Determinants行列式
step1:subtract 3 row1 from row2、step2:subtract 2 row2 from row3 **
[1 0 0 [1 0 0 [1 2 1
-3 1 0 * 3 8 2 = 0 2 -2
0 0 1] 0 4 1] 0 4 1]
E21(E为Elementary Matrics)
a important fact move the parentheses arbitrary 任意交换括号
Problem1:image Permutation Matrics想象[a b;c d]的置换矩阵(行置换)
Problem2:image Matrix’s [1 0 0;-3 1 0;0 0 1] Inverses

Lecture 3 and Lecture 4

four way of matrix multiplication 1st:normal way, row*col
2ed: cols way; 3st: rows way; 4th:col * row(m by 1 times 1 by p equals m by p); 5th:Block way.

Inverses

A-1(if this is exist) * A = I = A * A-1 左逆与右逆没有区别
Gauss-Jordan:[A I]->[I A-1]将【A I】同乘A-1即可理解

A=LU(L、U represent lower matrix and upper matrix)

与EA=U相比,更简洁.例:E=【1 0 0;-2 1 0;10 -5 1】则L=【1 0 0;2 1 0;0 5 1】
If no row exchanges the multipliers go directly into L(应该有负号?)
**How many operations on n*n matrix A?**应以Matlab算法复杂度的角度思考。count 1/3n3 on A,count n2 on b(back substitution)。

Permutation:identity matrix with reordered rows

(A-1)T=(AT)-1
number of permutation 3 by 3 matrix have 6P(Pemutation matrices)'s;n by n matrix have n! P’s
P-1=PT;PPT=I
R * RT is always symmetric

Lecture 5

Vectors spaces and subspaces

must satisfied multiply and addition

R2 = all 2-dim real vectors
R3 = all columns with 3 real components

subspaces of R2
1、all of R2
2、any line through [0 0]
3、zero vector only

A = [1 3;2 3;4 1]; for columns of A, in R3 , all their combinations from subspace called column space, C(A).

Lecture 6

two ways to get the subspaces Ax=0. A=[1 2 3 4;1 1 1 1;2 3 4 5]T
1: Columnspace: Does Ax=b have a solution for evering b? no. Which b’s allow this system to be solved? Can solve Ax=b exactly when b is in C(A)
2:Nullspace; Ax=0; N(A)=[c c -c]; check that solutions to Ax=0give a subspace always, If Av=0 and Aw=0 then A(v+w)=0 ,then A(2v)=0.
Ax=[1234],the solutions isn’t a subspace(substitution the [000] to x.).

Lecture 7

A=
1 2 2 2
2 4 6 8
3 6 8 10
echelon U=
1 2 2 2
0 0 2 4
0 0 0 0
the zero representes the second column is dependent on the eariler columns
there are two pivot columns, one free column
rank of A= # of pivots =2
# of free variables=n-r=4-2=2
special solution: two ways
1: back substitution
x1+2x2+2x3+2x4=0
2x3+4x4=0
X=c[-2;1;0;0]+d[2;0;-2;1]
2:R=(in MATLAB, use rref(A) to get R)
rref为reduced row echelon form
[1 2 2 2
0 0 1 2
0 0 0 0]
write:X=a*[unknow1 1 unknow2 0]T+b*[unknow3 0 unknow4 1]
[I F
0 0] form:

[1 0 2 -2
0 1 0 2
0 0 0 0]
X=a*[-2 1 0 0]+c*[2 0 -2 1]T
proof:
[I F] [xpoint;xfree]=0
xpoint=-F*xfree

Lecture 8

Complete solution of Ax=b
A=
1 2 2 2 b1
2 4 6 8 b2
3 6 8 10 b3
echelon U=
1 2 2 2 b1
0 0 2 4 b2-2*b1
0 0 0 0 b3-b2-b1
Solivability condition on b: Ax=b solvable when b in C(A).
b3-b2-b1=0 If a comb of rows of A gives zero row, then same comb. of entries of b must give 0.
To find complete sol’s to Ax=b,x=xparticular+xnullspace
you can set all free variables to zero to get xparticular.
m by n matrix A of rank r(know r<=m, r<=n)
4 situations:
1:r=m=n
A=
1 2
2 4 ;
R=I;
1 solution
2:r=n<m
A=
1 2
2 4
3 6;
R=[I; 0];
0 or 1 solution
3:r=m<n
R=[I F];
infinite solution
4:r<m, r<n
R=
[I F
0 0 ]
0 or infinite solutions

Lecture 9

Suppose A is m by n. with m<n. Then there are nonzero solutions to Ax=0.(more unknow than equations)
Reason: There will be free variables!!!
Independence: vectorsX1,X2,…,Xn are independent if no combination gives zero vector (except the zero comb,all cj=0)
c1x1+c2x2+…+cnxn=0
rank=n; N(A)={0};no free variables;
rank<n; yes free variables

span: Vectors V1,…Vl span a space means: The space consists of all combs of those vectors
Basis: Basis for a space is a sequence of vectors V1,V2,…,Vd with 2 propertities
1、They are independent
2: They span the space
Dimension: Every basis for the space has the same number of vectorrs, the number is DEFINITION OF DIMENSION
rank= # of pivot columns=dimension of C(A)
dim N(A)= # of free variables= n-r

Lecture 10

4 subspaces

1、columnspace C(A) in Rm
dim(C(A))=r;
2、nullspace N(A) in Rn
dim(N(A))=n-r=free variables=# of special solutions
3、row space = all combs. of rows = all combs of columns of C(AT)=C(AT)
dim(C(AT))=r
4、null space of AT = N(AT)=left nullspace of A
dim(N(AT))=m-r

A=
1 2 3 1
1 1 2 1
1 2 3 1
R=
1 0 1 1
0 1 1 0
0 0 0 0
C( R)!=C(A): different col space || same row space
N(AT) ATy=0 yTA=0
how to solve N(AT): E[Am*n Im*m]–>[Rm*n Em*n]
EA=R
E=
-1 2 0
-1 1 0
-1 0 0 0
the yellow part is yT. In chap 2, R was I, The E was A-1

new vector space

All 3+3 matrices
subspaces of M || upper triangulars || symmetric matrices || diagonal matrices ( dim of this subspace is 3.)

Lecture 11

In R4, v=[v1;v2;v3;v4],
S= all v in R4 with v1+v2+v3+v4=0
=nullspace of A =[1 1 1 1]
rank=1; dim(N)=n-r=3

small world graph

Graph={nodes, edges}
(这节存的稿子没保存,淦)

Lecture 12

在这里插入图片描述

Incidence matrics
node1 2 3 4
A = [-1 1 0 0 edge
0 -1 1 0
-1 0 1 0
-1 0 0 1
0 0 -1 1]
row1、2、3 consist a loop
Ax=0(x=x1,x2,x3,x4) --e=Ax–>x2-x1,etc,…Potential
differences --y=Ce–>current y1,y2,y3,y4,y5 --ATy=f–> Kirchoff’s CL
ATCAx=f
Tree=no loops
ATy=0 dimN(AT)=2=m-r=2

Lecture 13

review
N(CD)=N(D); if C is invertible

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《线性代数及其应用:MIT Gilbert》是一本介绍线性代数理论和其在实际应用中的使用的书籍,作者是MIT的Gilbert Strang教授。线性代数是数学中的一个基础学科,用于研究向量空间、线性映射和线性方程组等。而这本书主要聚焦于线性代数在实际领域中的应用。 书中首先介绍了向量和矩阵的基本概念和运算,包括线性组合、矩阵乘法和行列式等内容。然后详细探讨了线性方程组及其解的求解方法,并介绍了奇异值分解和特征值分解等相关的数值计算方法。这些理论部分给读者提供了深入学习线性代数的基础。 除了理论知识,书中还着重介绍了线性代数在不同领域中的应用。比如,在机器学习和数据科学中,线性代数常常用于处理高维数据的降维、矩阵分解和线性回归等问题。在图像处理和计算机图形学中,线性代数被广泛应用于图像变换、矩阵运算和图像压缩等方面。此外,线性代数在物理学、工程学和计算机科学等学科中也具有重要的应用价值。 总之,这本《线性代数及其应用:MIT Gilbert》以简明清晰的语言介绍了线性代数的基本概念和应用,适合那些对数学和实际应用感兴趣的读者。无论是学习线性代数的基础知识,还是探索线性代数在实际问题中的应用,这本书都是一本很好的指南。 ### 回答2: 线性代数及其应用是一门研究向量空间及其变换的数学学科。MIT Gilbert团队在CSDN上提供了与线性代数及其应用相关的学习资源。 首先,线性代数是一门重要的数学学科,广泛应用于各个科学领域,包括计算机科学、物理学、工程学等。掌握线性代数的基本概念和方法对于理解和解决实际问题具有重要意义。 MIT Gilbert团队在CSDN上提供了丰富的线性代数及其应用学习资源。这些资源包括教学视频、课件、习题等,覆盖了线性代数的各个方面,如矩阵运算、向量空间、线性变换等。这些学习资源旨在帮助学习者系统学习线性代数的基本理论和应用技巧,并通过实际例子和习题的解答来加深对概念和方法的理解。 通过学习线性代数及其应用,学习者可以了解和掌握线性方程组的求解方法、矩阵的运算规则、特征值和特征向量的计算等基本知识,从而应用到实际问题中。线性代数的应用广泛,例如在计算机图形学、机器学习、信号处理等领域,都需要运用线性代数的知识来解决问题。 综上所述,线性代数及其应用在科学研究和实际问题中都具有重要作用。MIT Gilbert团队在CSDN上提供的学习资源可以帮助学习者系统学习线性代数的基本概念和应用技巧,提高问题解决能力和应用能力。 ### 回答3: 线性代数是数学的一个分支,研究向量空间和线性映射的性质与结构。它是现代数学中的一门重要课程,对于解决实际问题具有广泛的应用。 在MIT的课程中,Gilbert Strang教授的《线性代数及其应用》(Linear Algebra and its Applications)是一门十分知名的课程。在该课程中,Strang教授通过深入浅出的讲解,结合许多实际问题,帮助学生理解线性代数的概念和应用。 这门课程介绍了许多线性代数的基本概念,如向量、矩阵、线性变换和特征值等。同时,还探讨了线性代数在实际问题中的应用,比如图像处理、信号处理和机器学习等领域。 通过该课程,学生可以学习到线性代数的基础知识,帮助他们在其他数学和科学领域中有更深入的理解和应用。此外,该课程还通过丰富的实例和练习,培养学生的问题解决能力和分析能力。 在CSDN(中国软件开发者社区)上,有许多关于MIT课程的学习资料和笔记,其中包括《线性代数及其应用》这门课程。这些资料可以帮助对线性代数感兴趣的人更好地理解和学习相关内容。 总之,通过学习《线性代数及其应用》,人们可以了解线性代数的基本概念和应用,并且通过实际问题的分析,培养自己的数学思维和解决问题的能力。在CSDN上,学习者可以找到丰富的学习资源,有助于深入学习该课程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值