MIT 18.06 linear algebra lecture 13 复习一 笔记

问题1

假设\(\boldsymbol{u}\)\(\boldsymbol{v}\)\(\boldsymbol{w}\)\(\mathbb{R}^7\)中的非零向量。他们生成了\(\mathbb{R}^7\)中的子空间,该子空间的维度可能是多少?

答案:\(1\)\(2\)\(3\)都可能是答案,子空间维度不可能更高,因此该子空间的基至多为三个向量。\(0\) 不可能是答案,因为这些向量均不为零。

问题2

假设一个\(5\times 3\)的矩阵\(R\),行化简形式有\(r=3\)个主元。

  • \(R\)的零空间是什么?
    因为\(R\)的秩为\(3\),并且矩阵有\(3\)列,所以除了零向量以外没有其他解,所以\(N(R)=\{0\}\)
  • 假设\(B\)\(10\times 3\)矩阵\(\left[\begin{array}{r}R\\2R\end{array}\right]\)\(B\)的行化简形式是?
    \(\left[\begin{array}{r}R\\0\end{array}\right]\)
  • \(B\)的秩是多少?
    \(3\)

  • 矩阵 \(c=\begin{bmatrix}R&R\\R&0\end{bmatrix}\) 的行化简形式是多少?
    \[ \left[\begin{array}{rr} R & R\\ R & 0 \end{array}\right]\rightarrow \left[\begin{array}{rr} R & R\\ 0 & -R \end{array}\right]\rightarrow \left[\begin{array}{rr} R & R\\ R & 0 \end{array}\right]\rightarrow \left[\begin{array}{rr} R & R\\ R & 0 \end{array}\right]. \]

  • \(C\)的秩是多少?
    \(6\)

  • 矩阵\(C^T\)的零空间维度是多少?
    \(m=10\)并且\(r=6\),所以\(N(C^T)=m-r=10-6=4\)

问题3

假设\(A\boldsymbol{x}=\begin{bmatrix}2\\4\\2\end{bmatrix}\)并且:
\[ x= \begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix}+c \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}+d \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \]
是一个完整解。注意现在并不知道\(A\)是多少?

  • 矩阵\(A\)的形状是多少?
    \(3\times 3\),因为\(\boldsymbol{x}\)\(\boldsymbol{b}\)均为\(3\times 1\)
  • \(A\)的行空间维度是多少?
    通过\(\boldsymbol{x}\)的完整解,\(A\)的列空间维度为\(2\)。,所以矩阵的秩和行空间维度为\(3-2=1\)
  • \(A\)是多少?
    因为特解\(\begin{bmatrix}2\\0\\0\end{bmatrix}\)的第二、三部分为零,所以\(A\)的第一列为\(\begin{bmatrix}1\\2\\1\end{bmatrix}\)\(\begin{bmatrix}0\\0\\1\end{bmatrix}\)\(A\)的零空间中,所以\(A\)的第三列为\(\begin{bmatrix}0\\0\\0\end{bmatrix}\),最后通过另一个零空间中的向量\(\begin{bmatrix}1\\1\\0\end{bmatrix}\)可以得知,\(A\)的第二列与第一列恰好相反,所以:
    \[ A= \left[\begin{array}{rrr} 1 & -1 & 0\\ 2 & -2 & 0\\ 1 & -1 & 0 \end{array}\right] \]
  • 什么样的向量 \(\boldsymbol{b}\) 使得 \(A\boldsymbol{x}=\boldsymbol{b}\) 有解 \(\boldsymbol{x}\)
    \(\boldsymbol{b}\)在列空间中时,有对应的解,所以\(\boldsymbol{b}\)\(\begin{bmatrix}1\\2\\1\end{bmatrix}\)的乘数,矩阵\(A\)的秩为\(1\)

问题4

假设:
\[ B=CD= \left[\begin{array}{rrr} 1 & 1 & 0\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{array}\right] \left[\begin{array}{rrrr} 1 & 0 & -1 & 2\\ 0 & 1 & 1 & -1\\ 0 & 0 & 0 & 0 \end{array}\right] \]
试着给出下面问题的答案(不对\(CD\)进行矩阵乘法计算)。

  • 给出\(B\)的零空间的基?
    矩阵\(B\)\(3\times 4\),所以\(N(B)\subseteq\mathbb{R}^4\),因为\(C=\left[\begin{array}{rrr}1&1&0\\0&1&0\\1&0&1\end{array}\right]\)是可逆的,所以\(B\)的零空间和\(D=\left[\begin{array}{rrrr}1&0&-1&2\\0&1&1&-1\\0&0&0&0\end{array}\right]\)的零空间相同。矩阵\(D\)已经是行化简形式,\(N(D)=N(B)\)由特解构成的基是:
    \[ \left[\begin{array}{r} 1 \\ -1 \\ 1 \\ 0 \end{array}\right], \left[\begin{array}{r} -2 \\ 1 \\ 0 \\ 1 \end{array}\right] \]
  • 找出\(B\boldsymbol{x}=\begin{bmatrix}1\\0\\1\end{bmatrix}\)的完整解。
    上面一问已经找出了零空间中的特殊解,继续找出一个特解。注意到\(C\begin{bmatrix}1\\0\\0\end{bmatrix}=\begin{bmatrix}1\\0\\1\end{bmatrix}\),接下来寻找一个向量\(\boldsymbol{x}\)使得\(D\boldsymbol{x}=\begin{bmatrix}1\\0\\0\end{bmatrix}\);另外一个角度是,注意到\(B=CD\)的第一列是\(\begin{bmatrix}1\\0\\1\end{bmatrix}\)。通过上述两种方法可以得到完整解:
    \[ \boldsymbol{x}= \left[\begin{array}{r} 1\\ 0\\ 0\\ 0 \end{array}\right]+c \left[\begin{array}{r} 1\\ -1\\ 1\\ 0 \end{array}\right]+d \left[\begin{array}{r} -2\\ 1\\ 0\\ 1 \end{array}\right] \]

简答

  • 给定一方阵\(A\),其零空间仅有零向量,则\(A^T\)的零空间?
    \(A^T\)的零空间同样仅有零向量,因为\(A\)是方阵。
  • 可逆矩阵能否构成\(5\times 5\)矩阵的向量空间中的子空间?
    不能。两个可逆矩阵的和可能不可逆,另外\(\boldsymbol{0}\)也不是可逆的,所以可逆矩阵的集合并不是向量空间
  • 如果\(B^2=0\),则\(B=0\)
    错误。\(B\)可以是\(\begin{bmatrix}0&1\\0&0\end{bmatrix}\)
  • \(A\)中的列线性无关时,\(n\)个等式和\(n\)个未知数组成的方程组\(A\boldsymbol{x}=\boldsymbol{b}\)对于任意\(b\)都有解。
    正确。\(A\)可逆,\(\boldsymbol{x}=A^{-1}\boldsymbol{b}\)有解。
  • 如果\(m=n\),则行空间等于列空间。
    错误。维数是相同的,但是空间不同。例如\(\begin{bmatrix}0&1\\0&0\end{bmatrix}\)
  • 矩阵\(A\)\(-A\)有同样的四个子空间。
    正确。对于任意空间中的任意向量\(\boldsymbol{v}\),都有\(-\boldsymbol{v}\)
  • 如果\(A\)\(B\)的四个子空间相同,则\(A\)\(B\)的乘数。
    错误。判断题的最佳方式是假设其是错的,再去寻找证据。假设\(A\)\(B\)均为大小一致的可逆矩阵,即是\(A\)\(B\)不同,其四个子空间仍然相同。
  • 如果交换\(A\),哪些子空间保持不变?
    行空间和零空间保持不变。
  • 为什么向量\(\boldsymbol{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}\)不能同时在\(A\)的零空间中,并且是\(A\)中的一行?
    假设\(\boldsymbol{v}\)\(A\)中的第\(i\)行,则向量\(A\boldsymbol{v}\)的第\(i\)部分为\(14\)\(\boldsymbol{v}\)不是\(A\boldsymbol{v}=0\)的解。
    ---

笔记来源:MIT 18.06 lecture 13

转载于:https://www.cnblogs.com/yuyin/articles/10098480.html

在探索智慧旅游的新纪元中,个集科技、创新与服务于体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值