yolov5训练时卡住0%解决方案

在使用YoloV5进行从LabelImg标注数据的训练时遇到进度条卡在0%的困境,通过将workers参数设置为0,问题得到了成功解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用yolov5训练从labelImg标注的数据时,训练时一直卡在0%:

Image sizes 640 train, 640 val
Using 4 dataloader workers
Logging results to runs/train/exp4
Starting training for 10 epochs...

     Epoch   gpu_mem       box       obj       cls    labels  img_size
  0%|          | 0/3 [</
在你提供的引用内容中,有一个问题描述了训练Yolov8在加载权重界面的情况。这个问题的原因是因为每次训练Yolov8,它会检查当前项目版本是否为最新,而官网的访问速度很慢导致在这个步骤上。解决这个问题的方法是在ultralytics/yolo/engine/model.py文件的353行注释掉调用检查版本的函数的语句。这样就可以快速开始训练了。 另外,还有一个引用提到了使用Yolov5训练一直0%的问题,但是这个问题的解决方法并没有在引用中提到。如果你需要关于这个问题的解答,请提供更多的信息或者引用内容。 此外,如果你需要下载YOLOv5模型并进行目标检测,可以通过训练好的模型实现。相比YOLOv4,YOLOv5的检测速度更快,体积更小。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Yolov8训练在加载权重界面](https://blog.csdn.net/cqjnovo/article/details/130459138)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [yolov5训练卡住0%解决方案](https://blog.csdn.net/weixin_44625028/article/details/123066997)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [yolov5_models.zip](https://download.csdn.net/download/lindamtd/12548307)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值