能量、功率、能量谱密度、功率谱密度、自相关函数_Matlab

能量信号的Parseval定理

∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = ∫ − ∞ ∞ ∣ X ( f ) ∣ 2 d f \int_{- \infty }^{ \infty} | x( t ) | ^2 dt = \int_{- \infty }^{ \infty} | X ( f ) | ^2 df x(t)2dt=X(f)2df
x ( t ) x(t) x(t)为实函数,则上式可写为
∫ − ∞ ∞ x ( t ) 2 d t = ∫ − ∞ ∞ ∣ X ( f ) ∣ 2 d f \int_{- \infty }^{ \infty} x( t ) ^2 dt = \int_{- \infty }^{ \infty} | X ( f ) | ^2 df x(t)2dt=X(f)2df
该定理表明一个实信号的平方的积分,或一个复信号振幅平方的积分(或 x ( t ) x ∗ ( t ) x(t)x^*(t) x(t)x(t)),等于信号的能量。
信号频率密度的模的平方 ∣ X ( f ) ∣ 2 |X(f)|^2 X(f)2 f f f的积分也等于信号能量,故称 ∣ X ( f ) ∣ 2 |X(f)|^2 X(f)2为信号的能量谱密度。

周期性功率信号的Parseval定理

x ( t ) x(t) x(t)周期性实功率信号,周期等于 T 0 T_0 T0,基频为 f 0 = 1 / T 0 f_0=1/T_0 f0=1/T0,则其傅里叶级数展开式为
x ( t ) = ∑ n = − ∞ ∞ C n e j 2 π n f 0 t x(t)=\sum_{n=-\infty}^{\infty}C_n e^{j2\pi n f_0t} x(t)=n=Cnej2πnf0t
其平均功率可以写为
1 T 0 ∫ − T 0 / 2 T 0 / 2 x ( t ) 2 d t = ∑ n = − ∞ ∞ ∣ C n ∣ 2 \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t)^2dt = \sum _{n=-\infty}^{\infty}|C_n|^2 T01T0/2T0/2x(t)2dt=n=Cn2
上式表示周期性功率信号的平均功率等于其频谱的模的平方和。

能量信号的自相关函数

自相关函数 R ( τ ) R(\tau) R(τ)反映了一个信号与延迟 τ \tau τ后的同一信号的相关程度。
能量信号 s ( t ) s(t) s(t)的自相关函数的定义为
R ( τ ) = ∫ − ∞ ∞ s ( t ) s ( t + τ ) d t , − ∞ < τ < ∞ R(\tau) = \int_{-\infty}^{\infty}s(t)s(t+\tau)dt,-\infty<\tau<\infty R(τ)=s(t)s(t+τ)dt<τ<
τ = 0 \tau=0 τ=0时,能量信号的自相关函数 R ( 0 ) R(0) R(0)等于信号的能量,即
R ( 0 ) = ∫ − ∞ ∞ s ( t ) 2 d t = E R(0) = \int_{-\infty}^{\infty}s(t)^2dt=E R(0)=s(t)2dt=E
能量信号的自相关函数的傅里叶变换就是其能量谱密度。
∣ S ( f ) ∣ 2 = ∫ − ∞ ∞ R ( τ ) e − j 2 π f τ d τ |S(f)|^2=\int_{-\infty}^{\infty}R(\tau) e^{-j2\pi f \tau} d\tau S(f)2=R(τ)ej2πfτdτ
即, R ( τ ) R(\tau) R(τ) ∣ S ( f ) ∣ 2 |S(f)|^2 S(f)2构成一对傅里叶变换,其中 S ( f ) = ∫ − ∞ ∞ s ( t ) e − j 2 π f t d t S(f)=\int_{-\infty}^{\infty}s(t) e^{-j2\pi f t} dt S(f)=s(t)ej2πftdt

功率信号的自相关函数

功率信号 s ( t ) s(t) s(t)的自相关函数的定义为
R ( τ ) = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 s ( t ) s ( t + τ ) d t , − ∞ < τ < ∞ R(\tau) = \lim_{T \to \infty } \frac{1}{T}\int_{-T/2}^{T/2}s(t)s(t+\tau)dt,-\infty<\tau<\infty R(τ)=TlimT1T/2T/2s(t)s(t+τ)dt<τ<
τ = 0 \tau=0 τ=0时,功率信号的自相关函数 R ( 0 ) R(0) R(0)等于信号的平均功率,即
R ( 0 ) = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 s ( t ) 2 d t = P R(0) = \lim_{T \to \infty } \frac{1}{T}\int_{-T/2}^{T/2}s(t)^2dt=P R(0)=TlimT1T/2T/2s(t)2dt=P
功率信号的自相关函数的傅里叶变换就是其功率谱密度。
P ( f ) = ∫ − ∞ ∞ R ( τ ) e − j 2 π f τ d τ P(f)=\int_{-\infty}^{\infty}R(\tau) e^{-j2\pi f \tau} d\tau P(f)=R(τ)ej2πfτdτ
即, R ( τ ) R(\tau) R(τ) P ( f ) P(f) P(f)构成一对傅里叶变换,
其中 P ( f ) = lim ⁡ T → ∞ 1 T ∣ S T ( f ) ∣ 2 P(f)=\lim _{T \to \infty } \frac{1}{T}|S_T(f)|^2 P(f)=TlimT1ST(f)2

举例

求余弦信号 s ( t ) = A c o s ( ω 0 t + θ ) s(t) = Acos(\omega_0 t + \theta) s(t)=Acos(ω0t+θ)的自相关函数、功率谱密度、平均功率。
R ( τ ) = 1 T 0 ∫ − T 0 / 2 T 0 / 2 s ( t ) s ( t + τ ) d t = 1 T 0 ∫ − T 0 / 2 T 0 / 2 A 2 cos ⁡ ( ω 0 t + θ ) cos ⁡ [ ω 0 ( t + τ ) + θ ] d t R(\tau)=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} s(t) s(t+\tau) \mathrm{d} t=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} A^{2} \cos \left(\omega_{0} t+\theta\right) \cos \left[\omega_{0}(t+\tau)+\theta\right] \mathrm{d} t R(τ)=T01T0/2T0/2s(t)s(t+τ)dt=T01T0/2T0/2A2cos(ω0t+θ)cos[ω0(t+τ)+θ]dt
R ( τ ) = A 2 2 cos ⁡ ω 0 τ ⋅ 1 T 0 ∫ − T 0 / 2 T 0 / 2   d t + A 2 2 1 T 0 ∫ − T 0 / 2 T 0 / 2 cos ⁡ ( 2 ω 0 t + ω 0 τ + 2 θ ) d t = A 2 2 c o s ω τ R(\tau)=\frac{A^{2}}{2} \cos \omega_{0} \tau \cdot \frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} \mathrm{~d} t+\frac{A^{2}}{2} \frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} \cos \left(2 \omega_{0} t+\omega_{0} \tau+2 \theta\right) \mathrm{d} t = \frac{A^2}{2}cos\omega \tau R(τ)=2A2cosω0τT01T0/2T0/2 dt+2A2T01T0/2T0/2cos(2ω0t+ω0τ+2θ)dt=2A2cosωτ
对上式作傅里叶变换,得功率谱密度
P ( ω ) = A 2 2 π [ δ ( ω − ω 0 ) + δ ( ω + ω 0 ) ] P(\omega)=\frac{A^{2}}{2} \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right] P(ω)=2A2π[δ(ωω0)+δ(ω+ω0)]
δ ( ω ) = δ ( 2 π f ) = 1 2 π δ ( f ) \delta(\omega)=\delta(2 \pi f)=\frac{1}{2 \pi} \delta(f) δ(ω)=δ(2πf)=2π1δ(f),得
P ( f ) = A 2 4 [ δ ( f − f 0 ) + δ ( f + f 0 ) ] P(f)=\frac{A^{2}}{4}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right] P(f)=4A2[δ(ff0)+δ(f+f0)]
功率谱密度对频率的积分,得平均功率
P = ∫ − ∞ ∞ P ( f ) d f = R ( 0 ) = A 2 2 P = \int_{-\infty}^{\infty}P(f)df=R(0)=\frac{A^2}{2} P=P(f)df=R(0)=2A2

序列的能量和功率

Parseval定理的拓展
∫ − ∞ ∞ x ( t ) 2 d t = ∫ − ∞ ∞ ∣ X ( f ) ∣ 2 d f \int_{- \infty }^{ \infty} x( t) ^2 dt = \int_{- \infty }^{ \infty} | X( f) | ^2 df x(t)2dt=X(f)2df
∑ n = − ∞ ∞ x ( n ) 2 = 1 2 π ∫ − π π ∣ X ( e j ω ) ∣ 2 d ω \sum_{n=-\infty}^{\infty } x(n)^2 = \frac{1}{2\pi} \int _{-\pi}^{\pi}|X(e^{j\omega})|^2 d\omega n=x(n)2=2π1ππX(e)2dω
∑ n = 0 N − 1 x ( n ) 2 = 1 N ∑ k = 0 N − 1 ∣ X ( k ) ∣ 2 \sum_{n=0}^{N-1} x(n)^2=\frac{1}{N} \sum_{k=0}^{N-1}|X(k)|^2 n=0N1x(n)2=N1k=0N1X(k)2
其中, X ( e j ω ) = D T F T [ x ( n ) ] X(e^{j\omega})=DTFT[x(n)] X(e)=DTFT[x(n)] X ( k ) = D F T [ x ( n ) ] X(k)=DFT[x(n)] X(k)=DFT[x(n)],后者是前者在频率区间 [ 0 , 2 π ] [0,2\pi] [0,2π]上的 N N N点等间隔采样。
离散序列的能量等于序列各点的平方求和。

考虑一个有限长实信号x(t),其采样序列为 x ( n ) x(n) x(n),采样周期为 T s T_s Ts,序列长度为 N N N,则 N ∗ T s = t 2 − t 1 N*T_s = t_2-t_1 NTs=t2t1
P = 1 t 2 − t 1 ∫ t 1 t 2 x ( t ) 2 d t = ∑ n = 0 N − 1 T s ∗ x ( n ) 2 t 2 − t 1 = ∑ n = 0 N − 1 x ( n ) 2 N P = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2}x(t)^2dt = \frac {\sum_{n=0}^{N-1} T_s * x(n)^2}{t_2-t_1}= \frac{\sum_{n=0}^{N-1} x(n)^2}{N} P=t2t11t1t2x(t)2dt=t2t1n=0N1Tsx(n)2=Nn=0N1x(n)2
联系前面序列的能量,可得
P = ∑ n = 0 N − 1 x ( n ) 2 N = 1 N 2 ∑ k = 0 N − 1 ∣ X ( k ) ∣ 2 P = \frac{\sum_{n=0}^{N-1} x(n)^2}{N} = \frac{1}{N^2} \sum_{k=0}^{N-1}|X(k)|^2 P=Nn=0N1x(n)2=N21k=0N1X(k)2
则离散序列的功率等于序列各点的平方求和除以序列长度。

Matlab验证

N = 1000;
Fs = 1000;
t = 0:1/Fs:(N-1)/Fs;
A = 1;
f = 50;
x = A*sin(2*pi*f*t);
X = fft(x);
E_t = sum(x.^2); %时域求能量
E_f = sum(abs(X).^2)/N; %频域求能量
P_t = sum(x.^2)/N; %时域求功率
x_r = xcorr(x); %自相关函数
Power_f = abs(fft(x_r))/N; %功率谱
figure; plot(Power_f);%双边功率谱
P_f = sum(Power_f(1:N))/N;%频域求功率
fprintf('E_t=%f, E_f=%f,P_t=%f, P_f=%f\n', E_t, E_f, P_t, P_f);

输出结果:

E_t=500.000000, E_f=500.000000,P_t=0.500000, P_f=0.499750

使用 periodogram函数

% 功率谱估计
psd = periodogram(x,'psd');
power = periodogram(x,'power');
subplot(2,1,1); plot(psd); title('PSD');
subplot(2,1,2); plot(power); title('PS');

输出结果:
在这里插入图片描述

参考文献:樊昌信, 曹丽娜. 通信原理(第7版)[M]. 北京: 国防工业出版社, 2017.

  • 2
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值