深入理解线性模型(二)---基于似然函数的估计

更新时间:2019.10.31

1. 引言

  在上一篇中,我们从损失函数的角度出发讨论了\(\beta\)\(\sigma\)的估计。在本篇将换一种极具统计味道的角度,从似然函数出发来讨论了\(\beta\)\(\sigma\)的估计。从中我们也将看见,在不同的假设中,损失函数将会发生不同的变化。

2. 关于\(\varepsilon\)假设

  在上一篇(基于损失函数的估计)中,我们提到,对于线性模型,我们常常使用Guass-Markon假设,即:

  1. \(E(\varepsilon) = 0\)
  2. \(cov(\varepsilon) = \sigma^2 I_n\)

  但是,实际上我们同方差的假设是总是不满足的,完整来说,对\(\varepsilon\)的假设应该有三种:

  1. 同方差,且各个随机误差变量不相关:\(cov(\varepsilon) = \sigma^2 I_n\)
  2. 异常差,但各个随机误差变量不相关,\(cov(\varepsilon) = diag(\sigma_1^2, \sigma_2^2, \cdots, \sigma_n^2)\)
  3. 异方差,且各个随机误差变量是相关的,
    \[ cov(\varepsilon) = \begin{pmatrix} \sigma_{11}^2 & cov(\varepsilon_1, \varepsilon_2) & \cdots & cov(\varepsilon_1, \varepsilon_n)\\ cov(\varepsilon_2, \varepsilon_1) & \sigma_{22}^2 & \cdots & cov(\varepsilon_2, \varepsilon_n)\\ \vdots & \vdots & & \vdots\\ cov(\varepsilon_n, \varepsilon_1) & cov(\varepsilon_n, \varepsilon_2) & \cdots & \sigma_{nn}^2 \end{pmatrix} \]

  此时,记\(cov(\varepsilon) = \Sigma\)

3. 基于似然函数的估计

  之前是从损失函数的角度进行参数的估计,但是实际上每个损失函数都应该对应着一个分布,并使得分布的似然函数达到最大
  我们知道在X给定的情况下,似然函数\(L(\theta;Y,X) = P_{\theta}(Y_1 = y_1, Y_2 = y_2, \cdots, Y_n = y_n)\)。假设

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值