概念
简单的说,线性回归代表基于某些特征 X (自变量)和预测变量 y(因变量)的线性关系。
公式如下:
y ( i ) = w 0 x 0 ( i ) + w 1 x 1 ( i ) + w 2 x 2 ( i ) + … + w n x n ( i ) y^{(i)} = w_0 x_0^{(i)} + w_1 x_1^{(i)} + w_2 x_2^{(i)} + … + w_n x_n^{(i)} y(i)=w0x0(i)+w1x1(i)+w2x2(i)+…+wnxn(i) ; 其中 x 0 ( i ) = 1 x_0^{(i)}=1 x0(i)=1 (公式1_1)
即:
h w ( x ( i ) ) = y ( i ) = ∑ j = 1 n w j x j ( i ) h_w(x^{(i)}) = y^{(i)} = \displaystyle\sum_{j=1}^{n}w_jx_j^{(i)} hw(x(i))=y(i)=j=1∑nwjxj(i);(公式1_2)
其中 w 代表每一个特征的权重,
x ( i ) x^{(i)} x(i)代表每一个特征的值。
i i i 代表每一个样本
也可以用矩阵的方式表达:
h W ( X ) = y = X ∙ W T h_W(X) = y = X∙ W^T hW(X)=y=X∙WT ; (公式2)
其中 X 代表 m 个样本,每个样本包含 n 个特征值,即 m × n 的矩阵
W 代表 n 个特征值的权重,即 1 × n 的行向量
W.T 为 W 的转置,为 n × 1 的列向量
y 代表预测值,为 m × 1 的列向量
线性回归是一种监督学习,即已知特征 X 和 标记 y 。由公式2可知,未知的是权重 W
即线性回归模型实际上是求解每个特征 X 的权重 W
求解
求解线性回归主要有两种方法:最小二乘法和最大似然估计。下面我们具体来看下。
最小二乘法
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法以估计值与观测值的平方和作为损失函数J(W) 。
有如下公式:
J ( W ) = ∑ i = 1 m ( y ( i ) − y p ( i ) ) 2 J(W) = \displaystyle\sum_{i=1}^{m} (y^{(i)} - y_p^{(i)})^2 J(W)=i=1∑m(y(i)−yp(i))2 ; (公式3)
其中 y^{(i)} 是样本标记,为实际值
y p ( i ) , y_p^{(i)}, yp(i), 为模型预测值
由公式1_2和公式3可得:
J ( w ) = ∑ i = 1 m ( y ( i ) − h w ( x ( i ) ) ) 2 J(w) = \displaystyle\sum_{i=1}^{m} (y^{(i)} - h_w(x^{(i)}))^2 J(w)=i=1∑m(y(i)−hw(x(i)))