线性回归最小二乘法和最大似然估计

本文介绍了线性回归的基本概念,包括线性模型的表示和损失函数。重点讨论了两种求解方法:最小二乘法和最大似然估计。最小二乘法通过最小化误差平方和找到最佳权重;最大似然估计则是从概率角度寻找使样本出现概率最大的权重。两者最终得到相同的解,揭示了线性回归模型的内在联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归最小二乘法和最大似然估计

概念

简单的说,线性回归代表基于某些特征 X (自变量)和预测变量 y(因变量)的线性关系。
公式如下:
    y ( i ) = w 0 x 0 ( i ) + w 1 x 1 ( i ) + w 2 x 2 ( i ) + … + w n x n ( i ) y^{(i)} = w_0 x_0^{(i)} + w_1 x_1^{(i)} + w_2 x_2^{(i)} + … + w_n x_n^{(i)} y(i)=w0x0(i)+w1x1(i)+w2x2(i)++wnxn(i) ; 其中 x 0 ( i ) = 1 x_0^{(i)}=1 x0(i)=1 (公式1_1)
即:
    h w ( x ( i ) ) = y ( i ) = ∑ j = 1 n w j x j ( i ) h_w(x^{(i)}) = y^{(i)} = \displaystyle\sum_{j=1}^{n}w_jx_j^{(i)} hw(x(i))=y(i)=j=1nwjxj(i);(公式1_2)
其中 w 代表每一个特征的权重,
x ( i ) x^{(i)} x(i)代表每一个特征的值。
i i i 代表每一个样本

也可以用矩阵的方式表达:
    h W ( X ) = y = X ∙ W T h_W(X) = y = X∙ W^T hW(X)=y=XWT ; (公式2)
其中 X 代表 m 个样本,每个样本包含 n 个特征值,即 m × n 的矩阵
W 代表 n 个特征值的权重,即 1 × n 的行向量
W.T 为 W 的转置,为 n × 1 的列向量
y 代表预测值,为 m × 1 的列向量

线性回归是一种监督学习,即已知特征 X 和 标记 y 。由公式2可知,未知的是权重 W
即线性回归模型实际上是求解每个特征 X 的权重 W

求解

求解线性回归主要有两种方法:最小二乘法和最大似然估计。下面我们具体来看下。

最小二乘法

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法以估计值与观测值的平方和作为损失函数J(W) 。
有如下公式:
    J ( W ) = ∑ i = 1 m ( y ( i ) − y p ( i ) ) 2 J(W) = \displaystyle\sum_{i=1}^{m} (y^{(i)} - y_p^{(i)})^2 J(W)=i=1m(y(i)yp(i))2 ; (公式3)
其中 y^{(i)} 是样本标记,为实际值
y p ( i ) , y_p^{(i)}, yp(i), 为模型预测值

由公式1_2和公式3可得:
    J ( w ) = ∑ i = 1 m ( y ( i ) − h w ( x ( i ) ) ) 2 J(w) = \displaystyle\sum_{i=1}^{m} (y^{(i)} - h_w(x^{(i)}))^2 J(w)=i=1m(y(i)hw(x(i)))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值