sklearn代码5 5-KNN参数的筛选

import numpy as np

from sklearn.neighbors import KNeighborsClassifier

from sklearn import datasets

# model_selection:模型选择
# cross_val_score:交叉 validation:验证
# 交叉验证
from sklearn.model_selection import cross_val_score

导包加载数据

X,y = datasets.load_iris(True)

X.shape
(150, 4)
150**0.5    # 样本数量的开平方

# K值选择时从1到13  大概是其开平方的数值,只是用于参考
12.24744871391589

cross_val_score交叉验证筛选最合适的参数

knn = KNeighborsClassifier()
score = cross_val_score(knn,X,y,scoring='accuracy',cv=
DPC-KNN (Density-Preserving Clustering with K-Nearest Neighbors)是一种结合了密度聚类和K近邻技术的算法,用于无监督的数据聚类。在Python中,你可以使用sklearn库来实现DPC-KNN的基本步骤,虽然sklearn本身并未提供官方的DPC-KNN实现,但我们可以通过组合其他组件来模拟这个过程。 首先,你需要安装必要的库,如numpy、scipy和sklearn。以下是一个简化版的DPC-KNN概念代码示例: ```python import numpy as np from scipy.spatial.distance import pdist, squareform from sklearn.cluster import DBSCAN from sklearn.neighbors import kneighbors_graph def density_preserving_cluster(X, k, eps): # 使用DBSCAN获取初始聚类 db = DBSCAN(eps=eps).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # 将核心样本标记出来 X_core = X[core_samples_mask] # 获得核心样本的核心邻居 knn_graph = kneighbors_graph(X_core, n_neighbors=k, mode='distance') graph_distances = squareform(knn_graph.toarray()) # 对每个核心样本,寻找其K邻域内其他点的距离排序 cluster_centers = [] for i in range(len(X_core)): distances = np.sort(graph_distances[i]) # DPC-KNN算法中的关键步骤:保留距离小于某个阈值的点 # 这里假设阈值为距离的第k+1大 threshold = distances[k] cluster_centers.append(np.where(graph_distances[i] < threshold)[0]) # 根据核心样本及其邻居创建最终聚类 final_labels = [labels[i] for i in cluster_centers] return final_labels # 示例用法 X = ... # 你的数据矩阵 final_clusters = density_preserving_cluster(X, k=5, eps=0.5) ``` 注意这只是一个简化的版本,实际应用中可能需要更复杂的优化和处理。另外,因为DPC-KNN不是标准的sklearn库算法,所以可能会需要一些额外的工作来调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值