总目录
图像处理总目录←点击这里
十二、直方图
12.1、原理
cv2.calcHist(images,channels,mask,histSize,ranges)
- images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
- channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
- mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
- histSize:BIN 的数目。也应用中括号括来
- ranges: 像素值范围常为 [0256]
12.2、灰度图
img = cv2.imread('cat.jpg',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
plt.hist(img.ravel(),256)
plt.show()
12.3、彩色图
img = cv2.imread('cat.jpg')
color = ('b','g','r')
for i,col in enumerate(color):
histr = cv2.calcHist([img],[i],None,[256],[0,256])
plt.plot(histr,color = col)
plt.xlim([0,256])
12.4、掩膜(mask)操作
12.4.1、原理
用选定的图像,图形或物体,对处理的图像(全部或局部)进行遮挡。
cv2.bitwise_and(src1, src2, mask=mask)
对图像每个像素值进行二进制“与”操作,1&1=1,1&0=0,0&1=0,0&0=0
利用掩膜(mask)进行“与”操作,即掩膜图像白色区域是对需要处理图像像素的保留,黑色区域是对需要处理图像像素的剔除
12.4.2、实例展示
def cv_show(img,name):
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows()
# 创建mask
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
cv_show(mask,'mask')
img = cv2.imread('cat.jpg', 0)
masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作
cv_show(masked_img,'masked_img')
掩膜(mask)区域
掩膜(mask)参与 “与” 运算
12.4.3、对比效果
img = cv2.imread('cat.jpg', 0)
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作
hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])
plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask, 'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0, 256])
plt.show()
12.5、直方图均衡化
12.5.1、原理
- 调用方法:
cv2.equalizeHist(src)
- 直方图均衡化是一种简单有效的图像增强技术
- 通过改变图像的直方图来改变图像中各像素的灰度
- 对在图像中像素个数多的灰度值进行展宽
- 而对像素个数少的灰度值进行归并
- 增大对比度,使图像清晰,达到增强的目的
- 主要用于增强动态范围偏小的图像的对比度
上图中左边为原始的灰度值,右边为均衡化之后的灰度值
主要处理灰度值
12.5.2、案例一
# 原图的直方图
img = cv2.imread('cat.jpg',0) #0表示灰度图 #clahe
plt.hist(img.ravel(),256)
plt.show()
# 均衡化的直方图
equ = cv2.equalizeHist(img)
plt.hist(equ.ravel(),256)
plt.show()
res = np.hstack((img,equ))
cv_show(res,'res')
12.5.3、案例二
将案例一种的图片切换lena.jpg
,重新运行
12.5.4、案例三
将案例一种的图片切换clahe.jpg
,重新运行
12.5.5、对比
- 案例一和案例二效果变得更好一点
- 案例三却将雕塑面部特征给模糊化了
- 引出了下一部分——自适应直方图均衡化
12.6、自适应直方图均衡化
cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
- clipLimit:颜色对比度的阈值,可选项,默认值 8
- titleGridSize:局部直方图均衡化的模板(邻域)大小,可选项,默认值 (8,8)
实现局部直方图处理
img = cv2.imread('clahe.jpg',0)
equ = cv2.equalizeHist(img)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
res_clahe = clahe.apply(img)
res = np.hstack((img,equ,res_clahe))
cv_show(res,'res')
原图
cat.jpg
lena.jpg
clahe.jpg