OpenCV图像处理——特征匹配

38 篇文章 16 订阅
29 篇文章 6 订阅

总目录

图像处理总目录←点击这里

十七、特征匹配

17.1、Brute-Force蛮力匹配

import cv2 
import numpy as np
import matplotlib.pyplot as plt

def cv_show(name,img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

img1 = cv2.imread('box.png', 0)
img2 = cv2.imread('box_in_scene.png', 0)
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# crossCheck表示两个特征点要互相匹,例如A中的第i个特征点与B中的第j个特征点最近的,并且B中的第j个特征点到A中的第i个特征点也是 
#NORM_L2: 归一化数组的(欧几里德距离),如果其他特征计算方法需要考虑不同的匹配计算方式
bf = cv2.BFMatcher(crossCheck=True)

一对一匹配

matches = bf.match(des1, des2)
matches = sorted(matches, key=lambda x: x.distance)
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None,flags=2)
cv_show('img3',img3)

在这里插入图片描述

k对最佳匹配

k=2,表示一个点匹配两个点

bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
# 过滤操作
good = []
for m, n in matches:
    if m.distance < 0.75 * n.distance:
        good.append([m])

img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
cv_show('img3',img3)

在这里插入图片描述
如果需要更快速完成操作,可以尝试使用cv2.FlannBasedMatcher

17.2、随机抽样一致算法(RANSAC)

随机抽样一致算法(Random sample consensus,RANSAC)

处理异常点,让拟合效果更好
在这里插入图片描述
选择初始样本点进行拟合,给定一个容忍范围,不断进行迭代
在这里插入图片描述
每一次拟合后,容差范围内都有对应的数据点数,找出数据点个数最多的情况,就是最终的拟合结果

在这里插入图片描述

单应性矩阵

经过角度变化进行一个投影变换

在这里插入图片描述

cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)

具体应用

图像拼接 -> https://blog.csdn.net/weixin_44635198/article/details/127968309

原图

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lzh~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值