问题描述
定义一个二维数组:
定义一个5*5的数组maze[5] [5] =
{
0,1,0,0,0,
0,1,0,1,0,
0,0,0,0,0,
0,1,1,1,0,
0, 0, 0,1, 0,
};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
输入:
一个5×5的二维数组,表示一个迷宫。数据保证有唯一解。
输出:
左上角到右下角的最短路径,格式如样例所示。
样例输入:
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
样例输出:
(0,0)
(1,0)
(2,0)
(2,1)
(2,2)
(2,3)
(2,4)
(3,4)
(4,4)
题意思路:
可以深搜也可以广搜,因为没写过深搜的博客,就用深搜写的。
代码:
#include <iostream>
using namespace std;
int maze[5][5];
struct point //定义点结构体
{
int x,y;
};
int mini_k = 100000; //最小的k
point path[1000]; //暂存路径的数组
point shortest_path[1000]; //最短路径的数组
int flag[5][5]={0}; //标记是否访问过,初始化为全0
bool inside(int x,int y)//判断x,y是否在地图内
{
if(x>=0&&x<5&&y>=0&&y<5)return true;
return false;
}
void dfs(int x,int y,int k)//对点 (x,y) 进行dfs遍历 当前是第k步
{
if(x==4&&y==4) //cout<<"到终点了"<<endl;
{
if(k<mini_k)//更新最短路径数组
{
mini_k = k;
for(int i=0;i<k;i++)
{
shortest_path[i] = path[i];
}
}
return;
}
if(inside(x+1,y) && flag[x+1][y]==0 && maze[x+1][y] ==0)//走四个方向
{
flag[x+1][y] = 1;
path[k].x = x+1; path[k].y = y;
dfs(x+1 ,y ,k+1);
flag[x+1][y] = 0;
}
if(inside(x,y+1) && flag[x][y+1]==0 && maze[x][y+1] ==0)
{
flag[x][y+1] = 1;
path[k].x = x; path[k].y = y+1;
dfs(x ,y+1 ,k+1);
flag[x][y+1] = 0;
}
if(inside(x-1,y) && flag[x-1][y]==0 && maze[x-1][y] ==0)
{
flag[x-1][y] = 1;
path[k].x = x-1; path[k].y = y;
dfs(x-1 ,y ,k+1);
flag[x-1][y] = 0;
}
if(inside(x,y-1) && flag[x][y-1]==0 && maze[x][y-1] ==0)
{
flag[x][y-1] = 1;
path[k].x = x; path[k].y = y-1;
dfs(x ,y-1 ,k+1);
flag[x][y-1] = 0;
}
}
int main()
{
int i,j;
for(i=0;i<5;i++)
{
for(j=0;j<5;j++)
{
cin>>maze[i][j];
}
}
flag[0][0]=1;
path[0]={0,0};
dfs(0,0,1);
for(int i=0;i<mini_k;i++)
{
cout<<'('<<shortest_path[i].x<<','<<" "<<shortest_path[i].y<<')'<<endl;
}
return 0;
}
感悟:这道题在深度搜索的基础上,加了保存了最短路径的代码。