ReadPaper
文章平均质量分 95
文献阅读 & 学习笔记
小雨的杰拉多尼
Get busy living, or get busy dying
展开
-
【Collaborative Perception - 4】AdaFusion(WACV2023)
本文通过在特征融合模块中构建trainable的自适应特征选择过程,可以在融合过程中在多个中自适应选择特征。在OPV2V数据集上检测车,在CODD数据集上检测车和行人(考虑到行人在实际的检测中更重要,且难度更高)简单来说,本文的特征融合部分改进较为简单,创新点不大,但实验结果好。原创 2023-01-28 16:56:00 · 495 阅读 · 0 评论 -
【SLAM学习】ORB-SLAM2-大体框架(OpenVSLAM)
OpenVSLAM是包含ORB-SLAM2内容并重新改写扩充后的仓库,因此和ORB-SLAM2源代码一些代码构造和变量名称不完全一样。虽然已经OpenVSLAM仓库已经停用了,但因为原来项目所用,因此继续延续以这个复习。大体的学习步骤就是根据b站的ORB-SLAM2的进行跟进看的过程中去对应OpenVSLAM里的相应实现。原创 2022-11-06 11:39:12 · 3275 阅读 · 0 评论 -
【Collaborative Perception - 3】Where2comm(NeurlPS2022)
协同感知问题存在感知性能和通信带宽之间的基本权衡。提出了 Spatial Confidence Map,作用是It empowers agents to only share spatially sparse, yet perceptually critical information, contributing to where to communicate.采用更加实用的压缩过程,通过关注感知关键区域,使用更少的沟通来实现更高的感知性能。可以通过动态调整通信涉及的空间区域来处理变化的通信带宽。原创 2022-10-16 20:29:53 · 1479 阅读 · 0 评论 -
【Collaborative Perception - 2】V2X-ViT(ECCV2022)
论文主要针对的是3D目标检测问题(自动驾驶领域)Heterogeneous agent:所谓异构,就是不光接收车的信息,还要接受infrastracture的信息。不同agent之间就形成了异构性,怎么有效融合就成了问题。(比如说交叉路口的固定传感器)提供的信息具有a broader sight-of-view and potentially less occlusion. 而且更稳定, 应该被利用起来。这一篇的亮点新结构。原创 2022-09-12 16:55:53 · 1265 阅读 · 0 评论 -
【Collaborative Perception - 1】综述:Collaborative Perception for Autonomous Driving
这是一篇最新的Collaborative Perception综述文章。individual车辆的感知系统已经研究到了比较高的精度层次。会让自动驾驶领域的研究到达瓶颈,因为有两个重要因素是单个车辆无法解决的:遮挡问题、长距离导致的点云稀疏问题。分为三类方法:早期融合、中期融合(方法较多)、后期融合早期融合:因为交换的是原始数据,需要交换的数据量过大,荣誉造成网络延迟中期融合:两个挑战(1.如何选择最有利的特征。2.如何最大限度融合其他agent的特征)后期融合:对定位误差非常敏感。原创 2022-09-12 15:29:20 · 1097 阅读 · 0 评论