【Collaborative Perception - 4】AdaFusion(WACV2023)

题目

Adaptive Feature Fusion for Cooperative Perception using LiDAR Point Clouds
论文地址
仓库地址

本文通过在特征融合模块中构建trainable的自适应特征选择过程,可以在融合过程中在多个CAV(Connected Autonomous Vehicles)中自适应选择特征。

在OPV2V数据集上检测车,在CODD数据集上检测车和行人(考虑到行人在实际的检测中更重要,且难度更高)

在这里插入图片描述
简单来说,本文的特征融合部分改进较为简单,创新点不大,但实验结果好。

1. Intro

一个简单的例子说明协同感知过程和意义。

  1. CAV2代表驶出路口的车辆,但他可以为其他车辆提供路口的信息。
  2. CAV1代表即将驶入路口的车辆,CAV3CAV4可以给其提供不同视角,使其安全驶过intersaction
  3. CAV4CAV3挡住的行人信息,可以通过CAV3CAV1给到。
    在这里插入图片描述

三种融合方式(区别:传递数据不同):

  • Early fusion: aggregates the raw input sensor data from other CAVs(高传输cost)
  • Intermediate fusion: aggregates the processed feature maps from other CAVs
  • Late fusion: aggregates the predicted outputs of object detection from other CAVs. (传输cost低,但是依赖于CAV的预测精度和后处理过程)

其中中融合方法普遍表现最好
其可改进方向(通过实现有效的特征选择和融合模块 --> 实时性+高准确性)

Contributions:

  1. 轻量化、中融合的感知协同框架
  2. 3D CNN和自适应特征融合用于协同感知,并提出了三种可训练的协同感知特征融合模型
  3. 在OPV2V和CODD数据集是那个验证。

2. Framework

五个步骤:「对应下边五个标题」

  1. 利用 PFN 将点云转换为伪图像
  2. 利用2D金字塔网络从伪图像中提取多尺度特征,得到中间特征图
  3. 将中间特征图从各CAV上投影到ego车上
  4. 利用特征融合网络生成融合特征图
  5. 执行目标检测任务,生成回归框并分类
    在这里插入图片描述

2.1 Feature Encoding

借用了PointPillars架构中的处理方式。
详细的解释参考链接:https://zhuanlan.zhihu.com/p/428258098

大概来说分为两步:

  1. 将点云数据处理成pillars形式。我的理解就是网格化处理,将每个point编码成D维度的向量(一般D是9=4+5),P个pillars,每个pillars有N个点。则数据变为了D*P*N
  2. 然后PointNet应用在数据上,处理得到 C i n ∗ P C_{in}*P CinP 的tensor。变换回原始图像生成 C i n × 2 H × 2 W C_{in} × 2H × 2W Cin×2H×2W 的伪图像。

2.2 Feature Extraction

简单利用FPN结构进行提取,三层降采样结果进行上采样并cat在一起,最后通过一层卷积调整到 C × H × W C × H × W C×H×W 维度。

2.3 Feature Projection

各个车将自己的feature map和六自由度pose发给ego车,投影过去。

2.4 Feature Fusion(重点)

  • 首先将收集来的数据叠加为4D的 n × C × H × W n × C × H × W n×C×H×W 而不是3D的 n C × H × W nC × H × W nC×H×W,减少计算量。「其中n是最大CAV数」
  • 具体的融合步骤,提出了空间和通道特征融合模型。

2.5 Object Detection

利用SSD进行目标检测,输出为【 H × W H × W H×W的size, ( c + 7 ) × B (c + 7) × B (c+7)×B 的channel】c个类别置信度和7维坐标(x, y, z, w, l, h, θ)

*Loss

分类是利用Focal loss,回归是smooth l1loss
在这里插入图片描述

3. 特征融合模块

主要的改变还是变为了在第四个维度上进行操作,而不是原来的通道维度上。
因此使用的都是三维的卷积。
在这里插入图片描述
总体来说比较简单:

  • 图a和b是 spatial-wise 特征融合
  • 图c和d是 channel-wise 特征融合

值得一提的是C-AdaFusion中,Adaptive Pooling都是池化到固定的size输出(torch中有包torch.nn.AdaptiveMaxPool3d)

4. Results

与其他方法的实验数据比较(虽然改进的简单,但是效果好)

  • IOU0.5的时候AP和其他方法差不多,但IOU在0.7的时候高出很多。说明即使所有模型能够达到较高的分类准确性,proposed方法也能得到最高的3D回归结果。
  • 并且参数量比V2X-ViT和V2VNet少。
    在这里插入图片描述

其中右上的行人和车是ego车完全看不到的,但还是完整检测了出来。
在这里插入图片描述

消融实验:

  1. 车的数量。对行人检测提升不够符合预期(行人难度较高)
  2. 3D卷积的kernel size
    在这里插入图片描述
    在这里插入图片描述
  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小雨的杰拉多尼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值