模型越大越聪明?其实没那么简单!聊聊大模型的Scaling Law

很多人都知道,大语言模型(比如 ChatGPT、Claude)很强,是因为它们特别“大”——参数多、数据多、训练得久。但是我们有没有想过:模型越大,真的就一定越好吗?

今天我们不聊预训练(模型还在“上学”的阶段),我们来聊聊 后训练阶段(模型“毕业”开始找工作了)和 推理阶段(模型真正“上班”干活了)的大模型扩展规律,也就是专业术语里的 Scaling Law(扩展规律)

1.后训练阶段的 Scaling Law:让模型学会“讨人喜欢”

预训练完,模型只是“知识很丰富”,但它不一定“懂人话”。这时候就要通过两个步骤,让模型更“对人友好”:

1.1. 奖励模型训练(Reward Model)

怎么做?
先找人类标注一些对比数据,比如:“A 回答比 B 更好”,然后训练一个“奖励模型”来学会判断什么是好回答。

Scaling Law 有什么规律?

  • 奖励模型越大,学得越像样。

  • 数据越多,表现越好,但越到后面提升越小(边际效益递减)。

  • 模型不能太小(装不下复杂的人类偏好),也不能太大(容易乱打分,甚至出现“奖励黑洞”——模型钻规则空子来拿高分)。

1.2. 强化学习微调(比如 PPO)

怎么做?
用刚才训练好的奖励模型给语言模型打分,再通过强化学习微调,让它学会生成“高分回答”。

Scaling Law 怎么体现?

  • 大模型容易“过拟合”,就是学会了“怎么讨好打分器”,但不一定真的理解人类想要什么(这叫 Reward Hacking)。

  • 训练久了可能收益越来越小,有时候甚至适得其反。

  • 大模型比小模型更敏感,对奖励模型的微小变化反应更大。

打个比方:
就像一个聪明孩子参加作文比赛,如果他只学会“讨好评委”,可能写得套路满满、华而不实。

2.推理阶段 Scaling Law:模型到底能“想”多远?

后训练之后,模型就要开始“干活”了,也就是我们常说的推理阶段(inference)。

🔍 Zero-shot、Few-shot 是什么?
  • Zero-shot:不给任何示例,模型直接完成任务。

  • Few-shot:给几个例子,模型举一反三。

Scaling Law 告诉我们:

  • 模型越大,Zero-shot 和 Few-shot 的能力普遍更强;

  • 某些复杂能力(比如数学、逻辑推理)只有在模型到达一定规模后才突然“觉醒”——这叫 能力突现(Emergent Abilities)

举个例子:
可能一个 10 亿参数的模型不会做小学数学,但一个 1000 亿参数的模型突然能解方程了,就像突然开窍一样。

3.这些规律能怎么用?你该怎么选模型?

阶段Scaling Law 看点对我们有什么用?
奖励模型训练看模型大小、数据量对打分效果的影响设计奖励模型时要避免太小太笨 or 太大乱来
强化学习微调看不同规模模型是否容易乱学调 RL 参数时,小模型稳定、大模型要小心过拟合
推理阶段看模型推理能力随规模怎么变选模型时可以根据任务复杂度“对号入座”

总结

大家都在说“大模型时代”,但实际上不是简单地“越大越好”。Scaling Law 让我们理解——什么样的训练资源投入,才能换来真正有用的智能能力

对于想做 AI 的你来说,它就是一把“指南针”:

  • 帮你规划资源;

  • 帮你预测性能;

  • 帮你避坑优化.

📢 想要了解更多内容,可在VX小程序搜索🔍AI Pulse(AI 脉动科技),获取更多最新内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值