高等数学复习(一)

高等数学知识清单(一)

第一章 函数与极限

基本极限

x → ∞ x \rightarrow \infty x 时可用

$\lim\limits_{x \rightarrow \infty} \sqrt[x]{x} = \lim\limits_{x \rightarrow \infty} x ^{\frac 1x} = 1 $

lim ⁡ x → ∞ a 1 n + a 2 n + … … + a m n n = a \lim\limits_{x \rightarrow \infty} \sqrt[n]{a_1^n + a_2^n +……+a_m^n}= a xlimna1n+a2n++amn =a,其中 a a a a 1 … … a m a_1 ……a_m a1am 中的最大值

等价无穷小 (仅 x → 0 x \rightarrow 0 x0 时适用)

x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x \sim \sin x \sim \tan x\sim\arcsin x \sim \arctan x\sim \ln (1+x) \sim e^x -1 xsinxtanxarcsinxarctanxln(1+x)ex1

( 1 + x ) α − 1 ∼ α x (1+x)^{\alpha}- 1\sim \alpha x (1+x)α1αx

1 − cos ⁡ α x ∼ α x 2 2 1 -\cos^{\alpha}x\sim\frac{\alpha x^2}{2} 1cosαx2αx2

a x − 1 ∼ x ln ⁡ a a^x - 1\sim x \ln a ax1xlna

x − sin ⁡ x ∼ 1 6 x 3 x-\sin x \sim \frac16 x^3 xsinx61x3

arcsin ⁡ x − x ∼ 1 6 x 3 \arcsin x - x\sim\frac 16 x^3 arcsinxx61x3

x − ln ⁡ ( x + 1 ) ∼ 1 2 x 2 x - \ln (x+1)\sim\frac 12 x^2 xln(x+1)21x2

tan ⁡ x − x ∼ 1 3 x 3 \tan x - x \sim \frac 13x^3 tanxx31x3

x − arctan ⁡ x ∼ 1 3 x 3 x - \arctan x\sim\frac 13 x^3 xarctanx31x3

变上线积分的等价无穷小:若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) x = 0 x = 0 x=0 的某领域内连续,且 lim ⁡ x → 0 f ( x ) g ( x ) = 1 \lim\limits_{x \rightarrow 0} \frac{f(x)}{g(x)} = 1 x0limg(x)f(x)=1

则有 ∫ 0 x f ( t ) d t ∼ ∫ 0 x g ( t ) d t \int^x_0f(t) dt \sim \int^x_0g(t) dt 0xf(t)dt0xg(t)dt

常用无穷大量的比较

已知 α > 0 \alpha >0 α>0 β > 0 \beta >0 β>0 a > 1 a>1 a>1

  1. x → + ∞ x\rightarrow +\infty x+

    ln ⁡ a x < x β < α x \ln^a x < x^{\beta}<\alpha^x lnax<xβ<αx

  2. n → ∞ n\rightarrow \infty n

    ln ⁡ α x < n β < a n < n ! < n n \ln^{\alpha}x<n^{\beta}<a^n<n!<n^n lnαx<nβ<an<n!<nn

1 ∞ 1^{\infty} 1 型极限解法(三部曲)

lim ⁡ α ( x ) = 0 \lim \alpha(x)=0 limα(x)=0 lim ⁡ β ( x ) = ∞ \lim\beta(x)=\infty limβ(x)=,且 lim ⁡ α ( x ) β ( x ) = A \lim \alpha(x)\beta(x)=A limα(x)β(x)=A,则有 lim ⁡ [ 1 + α ( x ) ] β ( x ) = e A \lim{[1+\alpha(x)]}^{\beta(x)}=e^{A} lim[1+α(x)]β(x)=eA

三部曲

  1. 写标准形式:原式 = lim ⁡ [ 1 + α ( x ) ] β ( x ) =\lim{[1+\alpha(x)]}^{\beta(x)} =lim[1+α(x)]β(x)
  2. 求极限: lim ⁡ α ( x ) β ( x ) = A \lim\alpha(x)\beta(x)=A limα(x)β(x)=A
  3. 写结果:原式 e A e^A eA

函数有界的判定

  1. I \bf I I 区间有限

    f ′ ( x ) f^{'}(x) f(x) 有界 → \rightarrow f ( x ) f(x) f(x) 有界

  2. I \bf I I 是闭区间

    f ( x ) f(x) f(x) 连续 → f ( x ) \rightarrow f(x) f(x) 有界

  3. I ∈ \bf I \in I 开区间 ( a , b ) (a,b) (a,b),且 f ( x ) f(x) f(x) I \bf I I 上连续

    • f ( a + ) ∃ , f ( b − ) ∃ f(a^+)\exist,f(b^-) \exist f(a+),f(b),则 f ( x ) f(x) f(x) I \bf I I 上有界
    • f ( a + ) f(a^+) f(a+) f ( b − ) f(b^-) f(b) ∞ \infty ,则 f ( x ) f(x) f(x) I \bf I I 上无界

变上限积分无穷小量的比较

对于 x → 0 x \rightarrow 0 x0 F ( x ) = ∫ 0 ϕ ( x ) f ( t ) d x F(x) = \int^{\phi(x)}_0f(t)dx F(x)=0ϕ(x)f(t)dx,若 ϕ ( x ) \phi(x) ϕ(x) x x x n n n 阶无穷小, f ( x ) f(x) f(x) x x x m m m 阶无穷小

F ( X ) F(X) F(X) x x x n ( m + 1 ) n(m+1) n(m+1) 阶无穷小。

第二章 多元函数微分学

连续与可导的定义

连续:左右极限以及该点处的值均相等

可导:左右导数相等(常用定义式2进行判断)

一元函数连续、可导、可微的关系

连续
可导
可微

导数的定义

两种常见定义形式

f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f^{'}(x_0) = \lim\limits_{h \rightarrow 0} \frac{f(x_0+h) -f(x_0)}{h} f(x0)=h0limhf(x0+h)f(x0)

f ′ ( x ) = lim ⁡ x → a f ( x ) − f ( a ) x − a f^{'}(x) = \lim\limits_{x \rightarrow a} \frac{f(x) - f(a)}{x - a} f(x)=xalimxaf(x)f(a)

导数与导数定义存在性
  • f ′ ( x 0 ) ∃ → lim ⁡ x → □ f ( x 0 + □ ) − f ( x 0 ) □ f^{'}(x_0) \exist \rightarrow \lim\limits_{x \rightarrow \square} \frac{f(x_0+\square) - f(x_0)}{\square} f(x0)xlimf(x0+)f(x0)
    1. □ → 0 \square \rightarrow 0 0
    2. □ ≠ 0 \square \neq0 =0
  • f ′ ( x 0 ) ← lim ⁡ x → □ f ( x 0 + □ ) − f ( x 0 ) □ f^{'}(x_0) \leftarrow \lim\limits_{x\rightarrow \square} \frac{f(x_0 + \square) - f(x_0)}{\square} f(x0)xlimf(x0+)f(x0)
    1. □ → 0 \square \rightarrow 0 0
    2. □ ≠ 0 \square \neq 0 =0
    3. $\square $ 可正可负

带绝对值函数的可导性

f ( x ) = ϕ ( x ) ∣ x − a ∣ f(x) = \phi(x)|x-a| f(x)=ϕ(x)xa,且 f ( x ) f(x) f(x) x = a x=a x=a 处连续

f ( x ) f(x) f(x) x = a x=a x=a 处可导的充要条件是 ϕ ( a ) = 0 \phi(a) = 0 ϕ(a)=0

补充的常用公式

a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)

a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)

( 1 − x ) n = ( 1 − x ) ( 1 + x + x 2 + … … + x n − 1 ) (1-x)^n = (1-x)(1+x+x^2+……+x^{n-1}) (1x)n=(1x)(1+x+x2++xn1)

补充的三角函数公式

sec ⁡ x = 1 cos ⁡ x \sec x = \frac{1}{\cos x} secx=cosx1

csc ⁡ x = 1 sin ⁡ x \csc x = \frac{1}{\sin x} cscx=sinx1

cot ⁡ x = 1 tan ⁡ x \cot x = \frac{1}{\tan x} cotx=tanx1

1 + tan ⁡ 2 x = sec ⁡ 2 x 1+ \tan^2x = \sec^2x 1+tan2x=sec2x

1 + cot ⁡ 2 x = csc ⁡ 2 x 1+\cot^2 x=\csc^2 x 1+cot2x=csc2x

cos ⁡ 2 x = 1 2 ( 1 + cos ⁡ 2 x ) \cos ^ 2x =\frac12(1 + \cos 2x) cos2x=21(1+cos2x)

sin ⁡ 2 x = 1 2 ( 1 − cos ⁡ 2 x ) \sin ^2x = \frac 12(1-\cos 2x) sin2x=21(1cos2x)

sin ⁡ x cos ⁡ x = 1 2 sin ⁡ 2 x \sin x\cos x = \frac 12 \sin 2x sinxcosx=21sin2x

cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x \cos 2x=\cos^2 x-\sin^2x cos2x=cos2xsin2x

基本公式

  1. 基本公式

    log ⁡ a x = 1 x ln ⁡ a \log_a{x} = \frac{1}{x \ln a} logax=xlna1

    建议记忆的特殊变换:

    ( 1 x ) ′ = − 1 x 2 (\frac {1}{x})^{'} = - \frac{1}{x^2} (x1)=x21

    ( 1 x ) ′ = 1 2 x (\frac{1}{\sqrt{x}})^{'} = \frac{1}{2\sqrt{x}} (x 1)=2x 1

  2. 三角函数

    ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)^{'} = \sec^2x (tanx)=sec2x

    $[\sec(x)]^{’} = \sec x\tan x $

    [ csc ⁡ ( x ) ] ′ = − csc ⁡ x cot ⁡ x [\csc(x)]^{'} = -\csc x\cot x [csc(x)]=cscxcotx

  3. 反三角函数

    [ arcsin ⁡ ( x ) ] ′ = 1 1 − x 2 [\arcsin(x)]^{'} = \frac{1}{\sqrt{1-x^2}} [arcsin(x)]=1x2 1

    [ arccos ⁡ ( x ) ] ′ = − 1 1 − x 2 [\arccos(x)]^{'} = - \frac{1}{\sqrt{1-x^2}} [arccos(x)]=1x2 1

    [ arctan ⁡ ( x ) ] ′ = 1 1 + x 2 [\arctan(x)]^{'} = \frac{1}{{1+x^2}} [arctan(x)]=1+x21

高阶导数公式

( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) (\sin x)^{(n)}=\sin(x+n \frac {\pi}2) (sinx)(n)=sin(x+n2π)

( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) (\cos x)^{(n)}=\cos(x+n\frac{\pi}{2}) (cosx)(n)=cos(x+n2π)

( u + v ) ( n ) = u ( n ) + v ( n ) (u+v)^{(n)}=u^{(n)}+v^{(n)} (u+v)(n)=u(n)+v(n)

( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) (uv)^{(n)}= \sum\limits^{n}_{k=0}C^k_nu^{(k)}v^{(n-k)} (uv)(n)=k=0nCnku(k)v(nk)

[ ln ⁡ ( a x + b ) ] ( n ) = ( − 1 ) n ( n − 1 ) ! a n ( a x + b ) n [\ln(ax+b)]^{(n)}=\frac{(-1)^n(n-1)!a^n}{(ax+b)^n} [ln(ax+b)](n)=(ax+b)n(1)n(n1)!an

罗尔定理

若满足:

  1. f ( x ) ∈ [ a , b ] f(x) \in [a,b] f(x)[a,b] (闭区间内连续)
  2. f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内可导 (开区间内可导)
  3. f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b) (端点处相等)

则(至少存在一个 ξ \xi ξ

∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b),使得 f ′ ( ξ ) = 0 f^{'}(\xi) = 0 f(ξ)=0

罗尔定理的推论

f ( x ) = 0 , … , f ( n − 1 ) ( x ) = 0 , f ( n ) ( x ) ≠ 0 f(x) = 0,…,f^{(n-1)}(x) = 0,f^{(n)}(x) \neq 0 f(x)=0,,f(n1)(x)=0,f(n)(x)=0,则 f ( x ) = 0 f(x) = 0 f(x)=0 最多 n n n 个实数根

例如 y = g ( x ) , x ∈ [ a , b ] y = g(x),x \in[a,b] y=g(x),x[a,b],有 g ( x ) = g ′ ( x ) = 0 , g ′ ′ ( x ) ≠ 0 g(x) = g^{'}(x) = 0,g^{''}(x) \neq 0 g(x)=g(x)=0,g(x)=0

∀ ξ ∈ ( a , b ) , g ( ξ ) ≠ 0 \forall \xi \in (a,b),g(\xi) \neq 0 ξ(a,b),g(ξ)=0

拉格朗日中值定理

f ( x ) f(x) f(x) 满足:

  1. f ( x ) ∈ [ a , b ] f(x) \in [a,b] f(x)[a,b] (闭区间内连续)
  2. f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 内可导

∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b) 使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{'}(\xi) = \frac{f(b) - f(a)}{b-a} f(ξ)=baf(b)f(a)

柯西中值定理

若满足:

  1. f ( x ) , g ( x ) ∈ [ a , b ] f(x) , g(x) \in [a,b] f(x),g(x)[a,b]
  2. f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( a , b ) (a,b) (a,b) 内可导
  3. g ′ ( x ) ≠ 0 g^{'}(x) \neq 0 g(x)=0

∃ ξ ∈ ( a , b ) \exist \xi \in (a,b) ξ(a,b),使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f^{'}(\xi)}{g^{'}(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

泰勒公式

f ( x ) f(x) f(x) x 0 x_0 x0 处具有任意阶导数,则可以展开为

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + … … + f ( n ) ( x 0 ) n ! ( x − x 0 ) ( n ) f(x) = f(x_0) + f^{'}(x_0)(x-x_0) + ……+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^{(n)} f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)(n)

麦克劳林公式( x → 0 x \rightarrow 0 x0 时的泰勒公式)

e x = 1 + x + x 2 2 ! + … … + x n n ! + o ( x n ) e^x = 1 + x + \frac{x^2}{2!} + …… + \frac{x^n}{n!} + o(x^n) ex=1+x+2!x2++n!xn+o(xn)

sin ⁡ x = x − x 3 3 ! + x 5 5 ! + … … + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) + o ( x 2 n − 1 ) \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + …… + \frac{(-1)^{n-1} x^{2n-1}}{(2n - 1)} + o(x^{2n - 1}) sinx=x3!x3+5!x5++(2n1)(1)n1x2n1+o(x2n1)

cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + … … + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + …… + \frac{(-1)^{n}x^{2n}}{(2n)!} + o(x^{2n}) cosx=12!x2+4!x4++(2n)!(1)nx2n+o(x2n)

1 1 − x = 1 + x + x 2 + … … + x n + o ( x n ) \frac{1}{1-x} = 1 + x + x^2 + …… + x^n + o(x^n) 1x1=1+x+x2++xn+o(xn)

1 1 + x = 1 − x + x 2 + … … + ( − 1 ) n x n + o ( x n ) \frac {1}{1 + x} = 1 -x+x^2+……+(-1)^nx^n + o(x^n) 1+x1=1x+x2++(1)nxn+o(xn)

ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + … … ( − 1 ) ( n − 1 ) x n n + o ( x n ) \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + …… \frac{(-1)^{(n-1)} x^n}{n} + o(x^n) ln(1+x)=x2x2+3x3+n(1)(n1)xn+o(xn)

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + … … + α ( α − 1 ) … … ( α − n + 1 ) n ! x n + o ( x n ) (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+……+\frac{\alpha(\alpha-1)……(\alpha-n+1)}{n!}x^n+o(x^n) (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+o(xn)

极值点的判别法

三大充分条件,不能倒推!

第一(充分)条件

f ′ ( x 0 + ) × f ′ ( x 0 − ) < 0 f^{'}(x_0^+) \times f^{'}(x_0^{-}) <0 f(x0+)×f(x0)<0

第二(充分)条件

f ′ ( x 0 ) = 0 f^{'}(x_0) = 0 f(x0)=0,则

{ f ′ ′ ( x ) < 0 x 0 为极大值点 f ′ ′ ( x ) > 0 x 0 为极小值点 \begin{cases} f^{''}(x) < 0& \text {$x_0$为极大值点}\\ \\ \\ f^{''}(x) > 0& \text {$x_0$为极小值点} \end{cases} f(x)<0f(x)>0x0为极大值点x0为极小值点

第三(充分)条件

设有 f ′ ( x 0 ) , f ′ ′ ( x 0 ) , … … , f ( n − 1 ) ( x 0 ) f^{'}(x_0),f^{''}(x_0),……,f^{(n-1)}(x_0) f(x0),f(x0),,f(n1)(x0) 均为 0 0 0 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0) \neq 0 f(n)(x0)=0,则有

  • n n n 为偶数,是极值点 → { f ( n ) ( x 0 ) > 0 , 极 小 值 f ( n ) ( x 0 ) > 0 , 极 大 值 \rightarrow \begin{cases}f^{(n)}(x_0) > 0, 极小值 \\f^{(n)}(x_0) > 0,极大值\end{cases} {f(n)(x0)>0,f(n)(x0)>0,
  • n n n 为奇数,非极值点

拐点的判断

第一充分条件

f ′ ′ ( x ) f^{''}(x) f(x) x 0 x_0 x0 的左右两侧异号

第二充分条件

f ′ ′ ′ ( x 0 ) ≠ 0 f^{'''}(x_0) \neq 0 f(x0)=0,则 x 0 x_0 x0 f ( x ) f(x) f(x) 的拐点

f ′ ′ ′ ( x 0 ) = 0 f^{'''}(x_0) = 0 f(x0)=0,则此方法不能判定是否为拐点

第三充分条件

设有 f ′ ( x 0 ) , f ′ ′ ( x 0 ) , … … , f ( n − 1 ) ( x 0 ) f^{'}(x_0),f^{''}(x_0),……,f^{(n-1)}(x_0) f(x0),f(x0),,f(n1)(x0) 均为 0 0 0 f ( n ) ( x 0 ) ≠ 0 f^{(n)}(x_0) \neq 0 f(n)(x0)=0,则有

  • n n n 为奇数,是拐点
  • n n n 为偶数,不是拐点

凹凸性

f ′ ′ ( x ) > 0 f^{''}(x) > 0 f(x)>0,凹区间

f ′ ′ ( x ) < 0 f^{''}(x ) < 0 f(x)<0,凸区间

曲率和曲率半径

曲率公式

K = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 K = \frac{|y^{''}|}{{(1+y^{'2})}^{\frac 32}} K=(1+y2)23y

曲率半径

R = 1 K R = \frac 1K R=K1

曲线的(斜)渐近线

lim ⁡ x → ∞ f ( x ) x = a \lim\limits_{x\rightarrow \infty} \frac{f(x)}{x} = a xlimxf(x)=a

lim ⁡ x → ∞ f ( x ) − a x = b \lim\limits_{x\rightarrow \infty} f(x) -ax = b xlimf(x)ax=b

y = a x + b y = ax + b y=ax+b 是曲线 y = f ( x ) y =f(x) y=f(x) 的渐近线

第三章 一元函数积分学

不定积分公式

常数

∫ k d x = k x + C \int kdx = kx + C kdx=kx+C

幂函数

∫ x a d x = 1 a + 1 x a + 1 + C    ( a ≠ − 1 ) \int x^adx = \frac1{a + 1}x^{a + 1} + C\space\space (a \neq -1) xadx=a+11xa+1+C  (a=1)

∫ x − 1 d x = ln ⁡ ∣ x ∣ + C    ( a = − 1 ) \int x^{-1}dx = \ln |x| + C\space\space (a = -1) x1dx=lnx+C  (a=1)

注意对 ln ⁡ ′ ∣ x ∣ = 1 x \ln^{'} |x| = \frac 1x lnx=x1,这是因为 y = ln ⁡ x , x ∈ ( 0 , + ∞ ) y = \ln x,x \in(0,+\infty) y=lnx,x(0,+)

指数函数

∫ a x d x = 1 ln ⁡ a a x + C    ( a ≠ e ) \int a^xdx = \frac1{\ln a}a^{x} +C\space\space (a\neq e) axdx=lna1ax+C  (a=e)

∫ e x d x = e x + C    ( a = e ) \int e^x dx = e^x + C\space\space (a=e) exdx=ex+C  (a=e)

三角函数

∫ sin ⁡ x   d x = − cos ⁡ x + C \int \sin x\space dx = -\cos x+C sinx dx=cosx+C

∫ cos ⁡ x   d x = sin ⁡ x + C \int \cos x \ dx= \sin x + C cosx dx=sinx+C

∫ tan ⁡ x   d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan x\ dx = -\ln|\cos x| + C tanx dx=lncosx+C

∫ cot ⁡ x   d x = ln ⁡ ∣   s i n x ∣ + C \int \cot x \ dx= \ln|\ sin x|+C cotx dx=ln sinx+C

∫ sec ⁡ x   d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec x \ dx = \ln|\sec x + \tan x| + C secx dx=lnsecx+tanx+C

∫ csc ⁡ x   d x = − ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int \csc x \ dx = -\ln|\csc x - \cot x| + C cscx dx=lncscxcotx+C

∫ sec ⁡ 2 x   d x = tan ⁡ x + C \int \sec^2x \ dx = \tan x + C sec2x dx=tanx+C

∫ csc ⁡ 2 x   d x = − cot ⁡ x + C \int \csc^2 x \ dx = -\cot x + C csc2x dx=cotx+C

∫ sec ⁡ x tan ⁡ x   d x = sec ⁡ x + C \int \sec x \tan x \ dx = \sec x + C secxtanx dx=secx+C

∫ csc ⁡ x cot ⁡ x   d x = − csc ⁡ x + C \int \csc x \cot x \ dx = -\csc x + C cscxcotx dx=cscx+C

∫ tan ⁡ 2 x = tan ⁡ x − x + C \int\tan^2x = \tan x-x+C tan2x=tanxx+C

复杂函数

∫ ln ⁡ x d x = x ln ⁡ x − x + C \int\ln x dx = x\ln x-x + C lnxdx=xlnxx+C

∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C \int \frac{dx}{a^2+x^2} = \frac 1a \arctan \frac xa + C a2+x2dx=a1arctanax+C

∫ d x a 2 − x 2 = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C \int \frac{dx}{a^2-x^2} = \frac 1{2a} \ln|\frac{a+x}{a-x}| + C a2x2dx=2a1lnaxa+x+C

∫ d x x 2 + a 2 = ln ⁡ ( x + x 2 + a 2 ) + C \int \frac{dx}{\sqrt{x^2+a^2}}=\ln(x+\sqrt{x^2+a^2})+C x2+a2 dx=ln(x+x2+a2 )+C

∫ d x x 2 − a 2 = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int \frac{dx}{\sqrt{x^2-a^2}}=\ln|x+\sqrt{x^2-a^2}|+C x2a2 dx=lnx+x2a2 +C

∫ d x a 2 − x 2 = arcsin ⁡ x a + C \int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin\frac xa+C a2x2 dx=arcsinax+C

三角有理函数积分

  1. 万能代换

    适用于 sin ⁡ x , cos ⁡ x \sin x,\cos x sinx,cosx 均为低次

    x = tan ⁡ x 2 x = \tan \frac x2 x=tan2x,则有

    $\sin x = \frac{2t}{1+t^2} $

    cos ⁡ x = 1 − t 2 1 + t 2 \cos x = \frac{1-t^2}{1+t^2} cosx=1+t21t2

    d x = 2 1 + t 2 d t dx = \frac 2{1+t^2}dt dx=1+t22dt

  2. 常见特殊方法

    • R ( − sin ⁡ x , cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x ) R(-\sin x,\cos x) = -R(\sin x,\cos x ) R(sinx,cosx)=R(sinx,cosx),则令 u = cos ⁡ x u = \cos x u=cosx
    • R ( sin ⁡ x , − cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x ) R(\sin x, -\cos x) = -R(\sin x,\cos x) R(sinx,cosx)=R(sinx,cosx),则令 u = sin ⁡ x u =\sin x u=sinx
    • R ( − sin ⁡ x , − cos ⁡ x ) = R ( sin ⁡ x , cos ⁡ x ) R (-\sin x,-\cos x) = R(\sin x,\cos x) R(sinx,cosx)=R(sinx,cosx),则令 u = tan ⁡ x u = \tan x u=tanx

定积分定义求极限

s = lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) s = \lim\limits_{n\rightarrow\infty} \frac 1n\sum\limits^n_{i=1}f(\frac in) s=nlimn1i=1nf(ni)

则取 x = i n x=\frac in x=ni

有原极限 = ∫ 0 1 f ( x ) d x =\int^1_0f(x) dx =01f(x)dx

积分中值定理

定理原型

f ( x ) ∈ c [ a , b ] f(x) \in c[a,b] f(x)c[a,b]

∃ ξ ∈ ( a , b ) \exist \xi \in(a,b) ξ(a,b)

使得 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int^b_a f(x)dx=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

广义积分中值定理

f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b] 上连续, g ( x ) g(x) g(x) 不变号

∃ ξ ∈ ( a , b ) \exist \xi \in(a,b) ξ(a,b)

使得 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int^b_af(x)g(x)dx= f(\xi)\int^b_ag(x)dx abf(x)g(x)dx=f(ξ)abg(x)dx

高阶三角函数积分的结论

  • ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n n − 3 n − 2 … … 1 2 π 2      n 为 偶 数 n − 1 n n − 3 n − 2 … … 2 3      n 为 非 1 的 奇 数 \int^{\frac {\pi}2}_0{\sin}^nx dx=\int^{\frac{\pi}{2}}_0 {\cos}^nxdx=\begin{cases} \frac{n-1}n\frac{n-3}{n-2}……\frac12\frac{\pi}2\ \ \ \ n为偶数\\ \\ \\ \\ \\ \frac{n-1}n\frac{n-3}{n-2}……\frac 23\ \ \ \ n为非1的奇数\end{cases} 02πsinnxdx=02πcosnxdx=nn1n2n3212π    nnn1n2n332    n1

  • ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int^{\pi}_{0}xf(\sin x)dx=\frac{\pi}2\int^{\pi}_0f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx

曲线/直线所围成平面图形的面积

以被积函数为 1 1 1 的二重积分形式体现

空间体体积

旋转体体积

区域 D \bf D D 绕直线 a x + b y + c = 0 ax + by + c = 0 ax+by+c=0 旋转,转化为关于被旋转区域 D \bf D D 和轴的二重积分

V = 2 π ∬ D r ( x , y ) d σ V = 2\pi \iint\limits_D r(x,y)d \sigma V=2πDr(x,y)dσ
其中
r ( x , y ) = ∣ a x + b y + c ∣ a 2 + b 2 r(x,y) = \frac{|ax+by+c|}{\sqrt{a^2+b^2}} r(x,y)=a2+b2 ax+by+c

截面面积

截面积函数 S ( x ) S(x) S(x),有
V = ∫ a b S ( x ) d x V = \int^b_aS(x)dx V=abS(x)dx

曲线弧长

即被积函数为 1 1 1 的第一类线积分

  • 直角坐标形式
    s = ∫ a b d s = ∫ a b 1 + y ′ 2 d x s = \int^b_a ds = \int ^b_a \sqrt{1+{y^{'}}^2}dx s=abds=ab1+y2 dx

  • 极坐标形式
    s = ∫ a b d s = ∫ α β x ′ 2 + y ′ 2 d t s = \int^b_a ds=\int ^{\beta}_{\alpha} \sqrt{{x^{'}}^2 + {y^{'}}^2} dt s=abds=αβx2+y2 dt

  • 参数方程形式
    s = ∫ a b d s = ∫ a b ρ 2 + ρ ′ 2 d θ s = \int^b_a ds= \int^b_a \sqrt{\rho^2 + {\rho^{'}}^2} d\theta s=abds=abρ2+ρ2 dθ

旋转体侧面积

平面由 y = f ( x ) ( f ( x ) ≥ 0 ) y=f(x)(f(x)\geq0) y=f(x)(f(x)0) x = a x=a x=a x = b ( 0 ≤ a ≤ b ) x=b(0\leq a \leq b) x=b(0ab) 以及 x x x 轴组成

则此图形绕 x x x 轴旋转的体积为
S = 2 π ∫ a b f ( x ) 1 + [ f ′ ( x ) ] 2 d x S=2\pi\int^b_af(x)\sqrt{1+{[f^{'}(x)]}^2} dx S=2πabf(x)1+[f(x)]2 dx

第四章 微分方程

一阶齐次线性微分方程

  • 可分离变量的微分方程

  • 齐次微分方程 d y d x = ϕ ( y x ) \frac{dy}{dx} =\phi(\frac{y}{x}) dxdy=ϕ(xy)

    u = y x u = \frac yx u=xy,有
    d y d x = d ( x u ) d x = u + u ′ x \frac{dy}{dx} = \frac{d(xu)}{dx} = u+u^{'}x dxdy=dxd(xu)=u+ux

  • 一阶齐次微分方程 y ′ + p ( x ) y = Q ( x ) y^{'} + p(x)y = Q(x) y+p(x)y=Q(x)

    有公式
    y = e − ∫ p ( x ) d x [ ∫ Q ( x ) e ∫ p ( x ) d x d x + C ] y = e^{-\int p(x)dx}[\int Q(x)e^{\int p(x)dx} dx+ C] y=ep(x)dx[Q(x)ep(x)dxdx+C]

可降阶的高阶微分方程

  • y ( n ) y^{(n)} y(n) 型:多次求导

  • y y y 型: f ( x , y ′ , y ′ ′ ) = 0 f(x,y^{'},y^{''}) = 0 f(x,y,y)=0

    y ′ = u y^{'} = u y=u,有 y ′ ′ = u ′ y^{''} = u^{'} y=u

  • x x x 型: f ( y , y ′ , y ′ ′ ) = 0 f(y,y^{'},y^{''}) = 0 f(y,y,y)=0

y ′ = u y^{'} = u y=u,有 y ′ ′ = u d u d y y^{''} = u\frac{du}{dy} y=udydu

高阶常系数线性微分方程

形如 y ′ ′ + p y ′ + q y = f ( x ) y^{''} + py^{'} + qy = f(x) y+py+qy=f(x) 的方程

求通解

解特征方程 r 2 + p r + q = 0 r^2 + pr+ q = 0 r2+pr+q=0

  1. r 1 ≠ r 2 r_1 \neq r_2 r1=r2 y = C 1 e r 1 x + C 2 e r 2 x y = C_1e^{r_1x} + C_2e^{r_2x} y=C1er1x+C2er2x
  2. r 1 = r 2 = r r_1 = r_2 = r r1=r2=r,有根 e r x , x e r x e^{rx},xe^{rx} erx,xerx,即 y = ( C 1 + C 2 x ) e r x y = (C_1 + C_2x)e^{rx} y=(C1+C2x)erx
  3. r 1 = α x + β i r_{1} = \alpha x + \beta i r1=αx+βi r 2 = α x − β i r_2 = \alpha x - \beta i r2=αxβi y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x) y=eαx(C1cosβx+C2sinβx)
求特解
确定解的结构

f ( x ) = f 1 ( x ) + f 2 ( x ) + … … + f n ( x ) f(x) = f_1(x) + f_2(x) + ……+f_n(x) f(x)=f1(x)+f2(x)++fn(x) ,则对于 f i ( x ) , i ∈ n f_i(x),i\in n fi(x),in,分别写出对应解的结构

f i ( x ) = U m e σ x f_i(x) = U_m e^{\sigma x} fi(x)=Umeσx

特解的通用形式 x k P m ( x ) e λ x x^kP_m(x)e^{\lambda x} xkPm(x)eλx

  1. 确定 k k k

r 1 , r 2 r_1,r_2 r1,r2 中有几个与 λ \lambda λ 相同

  1. 确定 P m P_m Pm

    P m P_m Pm 的阶数同 f i ( x ) f_i(x) fi(x) x x x 的阶数

  2. 确定 $\lambda $

    λ \lambda λ 的阶数同 f i ( x ) f_i(x) fi(x) e x e^x ex 的阶数

f i ( x ) = e α x [ P l ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f_i(x) = e^{\alpha x}[P_l(x) \cos \beta x + P_n(x) \sin \beta x] fi(x)=eαx[Pl(x)cosβx+Pn(x)sinβx]

特解的通用形式 y ∗ = x k e α x [ R m ( 1 ) ( x ) cos ⁡ β x + R m ( 2 ) sin ⁡ β x ] y^* = x^ke^{\alpha x} [R_m^{(1)}(x) \cos \beta x + R_m^{(2)}\sin \beta x] y=xkeαx[Rm(1)(x)cosβx+Rm(2)sinβx]

  1. 确定 k k k 的值

    α + β i \alpha + \beta i α+βi 是方程的特征根, k = 1 k = 1 k=1

    α + β i \alpha + \beta i α+βi 不是方程的特征根, k = 0 k =0 k=0

  2. 确定 R m R_m Rm

    m = M a x { l , n } m = Max\{l,n\} m=Max{l,n}

    R m R_m Rm 的阶段数量同 l , n l,n l,n 中的较大者

  3. 确定 α \alpha α

    α \alpha α 的阶数同 f i ( x ) f_i(x) fi(x) e x e^x ex 的阶数

微分算子法求特解

求导记作 D D D,则求积分记作 1 D \frac 1D D1,对于形如 y ′ ′ + p y ′ + q y = f ( x ) y^{''} + py^{'} + qy = f(x) y+py+qy=f(x) 的方程(以二阶为例,更高阶同理)

  • f ( x ) = e k x f(x) = e^{kx} f(x)=ekx

    1. 将各阶导数写作微分算子的形式并移到右侧,有 e k x D 2 + p D + q \frac {e^{kx}}{D^2 + pD + q} D2+pD+qekx
    2. 根据重根数量,定 x x x 系数。若有 m m m 重根,则有 y ∗ = x m e k x F ( m ) ( D ) y^* = x^m \frac{e^kx}{F^{(m)}(D)} y=xmF(m)(D)ekx
    3. D = k D =k D=k,定出最后的解
  • f ( x ) = cos ⁡ a x , f ( x ) = sin ⁡ a x f(x) = \cos a x,f(x) = \sin a x f(x)=cosax,f(x)=sinax

    cos ⁡ a x \cos a x cosax 为例

    1. 将各阶导数写作微分算子形式并移到右侧,有 cos ⁡ a x D 2 + p D + q \frac {\cos a x}{D^2 + pD + q} D2+pD+qcosax
    2. 根据重根数量,定 x x x 系数。若重根为 m m m,则有 y ∗ = x m cos ⁡ a x F ( m ) ( D ) y^* = x^m \frac{\cos ax}{F^{(m)}(D)} y=xmF(m)(D)cosax
    3. D 2 = − a 2 D^2 = -a^2 D2=a2,定出最后的解

其他类型使用微分算子法计算复杂度个人认为与传统待定系数法差别不大

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值