什么是二叉树
二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)
二叉树的性质
性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4: 具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5: 对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)
实现
class Node():
"""节点"""
def __init__(self, item):
self.elem = item
self.lchild = None
self.rchild = None
class Tree:
"""二叉树"""
def __init__(self):
self.root = None
def add(self, item):
node = Node(item)
if self.root is None:
self.root = node
return
queue = [self.root]
while queue:
cur_node = queue.pop(0)
if cur_node.lchild is None:
cur_node.lchild = node
return
else:
queue.append(cur_node.lchild)
if cur_node.rchild is None:
cur_node.rchild = node
return
else:
queue.append(cur_node.lchild)
if cur_node.rchild is None:
cur_node.rchild = node
return
else:
queue.append(cur_node.rchild)
遍历
广度优先遍历(层次遍历)
从树的root开始,从上到下从从左到右遍历整个树的节点
def breadth_travel(self):
"""广度遍历"""
if self.root is None:
return
queue = [self.root]
while queue:
cur_node = queue.pop(0)
print(cur_node.elem)
if cur_node.lchild is not None:
queue.append(cur_node.lchild)
if cur_node.rchild is not None:
queue.append(cur_node.rchild)
先序遍历
根节点->左子树->右子树
def preorder(self, node):
"""先序遍历"""
if node is None:
return
print(node.elem)
self.preorder(node.lchild)
self.preorder(node.rchild)
中序遍历
左子树->根节点->右子树
def inorder(self, node):
"""中序遍历"""
if node is None:
return
self.inorder(node.lchild)
print(node.elem)
self.inorder(node.rchild)
后序遍历
左子树->右子树->根节点
def postorder(self, node):
"""后序遍历"""
if node is None:
return
self.postorder(node.lchild)
self.postorder(node.rchild)
print(node.elem)