python
文章平均质量分 68
Zain Lau
深度学习算法工程师
展开
-
3天带你创造属于自己的深度学习框架(3)
Lesson-03 CapstoneReviewimport numpy as npclass Node: def __init__(self, inputs=[], name=None, is_trainable=True): self.inputs = inputs self.outputs = [] self.name = name self.is_trainable = is_trainable原创 2020-09-10 19:22:20 · 339 阅读 · 0 评论 -
3天带你创造属于自己的深度学习框架(2)
Lesson-02 反向传播 激活函数 图传播的拓扑结构import randomimport numpy as npfrom sklearn.datasets import load_bostonX, y = load_boston()['data'], load_boston()['target']room_index = 5X_rm = X[:, room_index]def loss(y, y_hat): # 如何定义loss函数 好的loss函数 是一个单独的研究方向原创 2020-09-10 19:15:02 · 289 阅读 · 0 评论 -
3天带你创造属于自己的深度学习框架(1)
通过构建线性回归-理解Loss函数-梯度下降与函数拟合Load Datasetfrom sklearn.datasets import load_bostondata = load_boston()X, y = data['data'], data['target']X[1]y[1]X.shapelen(y)%matplotlib inlineimport matplotlib.pyplot as pltplt.scatter(X[:, 5], y)目标:就是要找一个“最原创 2020-09-10 18:58:53 · 458 阅读 · 0 评论 -
model.yolov1.py
#coding:utf-8import torchimport torch.nn as nnimport torch.utils.model_zoo as model_zooimport torch.nn.functional as Fimport mathclass VGG(nn.Module): def __init__(self): super(VGG,self).__init__() # the vgg's layers #self.f原创 2020-07-30 10:10:58 · 156 阅读 · 0 评论 -
model.east.py
import torchimport torch.nn as nnimport torch.utils.model_zoo as model_zooimport torch.nn.functional as Fimport mathcfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']def make_layers(cfg, batch_norm=Fals原创 2020-07-30 10:06:47 · 192 阅读 · 0 评论 -
CV-YOLOV4训练1
import torchimport torch.nn as nnimport torch.utils.model_zoo as model_zooimport torch.nn.functional as Fimport mathclass VGG(nn.Module): def __init__(self): super(VGG,self).__init__() # the vgg's layers #self.features = feat原创 2020-07-30 10:02:54 · 172 阅读 · 0 评论 -
有向图模型与条件独立性
有向图模型——贝叶斯网络1. 有向图对概率模型的表达在上一篇当中,我们曾经遗留了一个问题,即概率图模型将抽象的图赋予了概率的含义,而概率图模型的中心问题就是多维随机变量的联合概率分布 p(x1,x2,x3,...,xp)p(x_1,x_2,x_3,...,x_p)p(x1,x2,x3,...,xp) 的计算,而高维度就是导致链式法则计算的直接原因,由此我们想了很多办法去进行简化。那么在这一篇,我们就基于有向概率图模型来谈谈如何进行联合概率表达式的简化,以及其中的窍门:条件独立性。首先我们来谈原创 2020-07-21 18:58:15 · 1763 阅读 · 2 评论 -
Python实现淘宝直播自动点赞与抽奖
最近入了直播抽奖的坑,而且中了不少奖,薅羊毛事后一时爽,天天刷火葬场。于是想到用Python自动监控,直播福利是以抽奖为形式的,粉丝们在互动区疯狂发送关键字,主播随机截图,并给在截图中的粉丝送出福利。这个过程需要粉丝疯狂的点赞,以及实时盯着屏幕以防什么时候开始刷屏抽奖。如果全程亲自操作,依靠自己手动点击的话,不能解放双手,是非常拉底做事效率的。如果依靠自己盯着屏幕看,也是非常原始的做法。所以,如果能有一个自动点赞+自动窥屏的外挂将会让我们在薅羊毛的路上满载而归。鉴于之前已经有同学实现了自动挖掘抖音美女原创 2020-07-06 16:04:00 · 6613 阅读 · 6 评论 -
# 使用Prophet预测manning未来365天的页面流量
# 从2007年12月10日开始import pandas as pdfrom fbprophet import Prophetimport matplotlib.pyplot as plt%matplotlib inline# 读入数据集df = pd.read_csv('./manning.csv')#print(df.head())#print(df.tail())# 拟合模型model = Prophet()model.fit(df)# 构建待预测日期数据框,period原创 2020-07-02 00:02:21 · 271 阅读 · 0 评论 -
Market_Basket_Apriori
!pip install efficient_aprioriimport pandas as pdimport numpy as npfrom efficient_apriori import apriori# 数据加载dataset = pd.read_csv('./Market_Basket_Optimisation.csv', header=None)print(dataset.shape) print(transcations)# 将数据存放到transactions中t原创 2020-07-01 02:22:19 · 461 阅读 · 0 评论 -
Lecture-02-Search-Policy-and-Simple-Machine-Learning
问题描述大家好,我们在用 networkx 显示中文的时候,会发现不能显示中文。解决办法下载Github仓库中的字体SimHei.ttf;在 jupyter notebook 中执行import matplotlibprint(matplotlib.__path__)找到 matplotlib 的路径,然后 cd 到这个路径。 cd 到这个路径之后,继续 cd,cd 到 mpl-data/fonts/ttf 这个路径。 然后把 DejaVuSans.ttf 这个文件换成我们刚刚下在的文件原创 2020-07-01 02:15:53 · 217 阅读 · 0 评论 -
小刘总--机器学习(深度优先算法)
Lesson-02深度优先与广度优先爬虫的原理机器学习的原理OOV ?Out of VocabularyLambdaimport random"""adj* => adj* adj | adj null"""def adj(): return random.choice('蓝色的 | 好看的 | 小小的'.split('|')).split()[0]give_adjs = lambda : adj() + adj_star_2()give_null = lambda原创 2020-07-01 02:04:43 · 459 阅读 · 0 评论 -
lesson-01-course-code
import randomsentence = """句子 = 主 谓 宾主 = 你 | 我 | 他谓 = 吃 | 喝宾 = 橘子 | 汽水 | 茶"""input: 根据这个语法定语,能够生成句子def sentence(): return 主语() + 谓语() + 宾语()def 主语(): return random.choice('你 | 我 | 他'.split('|'))def 谓语(): return random.choice('吃原创 2020-07-01 01:53:58 · 257 阅读 · 0 评论 -
Lecture-01-Syntax-Tree-and-Language-Model
Lesson-01 AI Introduction: Syntax Tree and Probability Model如果给定一个语法,我们怎么生成语法呢?import randomsentence = """句子 = 主 谓 宾主 = 你 | 我 | 他"""two_number = """num* => num num* | numnum => 0 | 1 | 2 | 3 | 4 """def two_num(): return num() + num()原创 2020-07-01 01:33:23 · 206 阅读 · 0 评论 -
LR 手写数字识别课堂代码复现
from sklearn.model_selection import train_test_splitfrom sklearn import preprocessingfrom sklearn.metrics import accuracy_scorefrom sklearn.datasets import load_digitsfrom sklearn.svm import SVCimport matplotlib as pltfrom sklearn.metrics import conf原创 2020-07-01 01:27:19 · 240 阅读 · 0 评论 -
CART 算法手写数字识别
from sklearn.model_selection import train_test_splitfrom sklearn import preprocessingfrom sklearn.metrics import accuracy_scorefrom sklearn.datasets import load_digitsfrom sklearn.svm import SVCimport matplotlib as pltfrom sklearn.metrics import conf原创 2020-07-01 01:22:22 · 434 阅读 · 0 评论 -
lesson-03-多维向量版本 (1)
import numpy as npimport randomclass Node: def __init__(self, inputs=[]): self.inputs = inputs self.outputs = [] for n in self.inputs: n.outputs.append(self) # set 'self' node as inbound_nodes's outbo原创 2020-06-30 23:11:52 · 183 阅读 · 0 评论 -
Lesson-03-Create-Neural-Framework (1)
今天整个猛的!BREAK SENTENCE BY YOURSELF!!!class Node: def __init__(self, inputs=[], name=None, is_trainable=True): self.inputs = inputs self.outputs = [] self.name = name self.is_trainable = is_trainable for原创 2020-06-30 23:02:40 · 134 阅读 · 0 评论 -
小刘总学AI¥¥ Lesson-01 通过构建线性回归-理解Loss函数-梯度下降与函数拟合
Load Datasetfrom sklearn.datasets import load_bostondata = load_boston()X, y = data['data'], data['target']X, y = data['data'], data['target']X[1]y[1]X.shapelen(y)%matplotlib inlineimport matplotlib.pyplot as pltplt.scatter(X[:, 5], y)原创 2020-06-30 22:53:52 · 258 阅读 · 0 评论 -
Lesson-01 通过构建线性回归-理解Loss函数-梯度下降与函数拟合
Load Datasetfrom sklearn.datasets import load_bostondata = load_boston()X, y = data['data'], data['target']X[1]y[1]X.shapelen(y)%matplotlib inlineimport matplotlib.pyplot as pltplt.scatter(X[:, 5], y)目标:就是要找一个“最佳”的直线,来拟合卧室和房价的关系import原创 2020-06-30 22:37:51 · 240 阅读 · 0 评论 -
连续偏导-拓扑排序
Lesson-01 通过构建线性回归-理解Loss函数-梯度下降与函数拟合Load Datasetfrom sklearn.datasets import load_bostondata = load_boston()X, y = data['data'], data['target']X[1]y[1]X.shapelen(y)%matplotlib inlineimport matplotlib.pyplot as pltplt.scatter(X[:, 5], y原创 2020-06-30 22:33:35 · 205 阅读 · 0 评论 -
小刘总Python实现人脸识别DAY1
今天配置了一天的开发环境,终于写了一套人脸识别的程序用的库是face_recognition,这是一款免费、开源、实时、离线的Python人脸识别库。Github网址为https://github.com/ageitgey/face_recognition。我电脑上安装了Anaconda,dlib会自动获取。Windows系统安装dlib可直接在网站https://pypi.org/simple/dlib/下载对应版本的whl文件,用pip安装,简单高效。报了很多错,大家配置有问题的可以问我,我是一片原创 2020-06-23 21:58:11 · 318 阅读 · 1 评论 -
文科生都能看懂的设计模式
单例模式:你是我生命的唯一【故事剧情】爱情是每一个都渴望的,Tony 也是一样!自从毕业后,Tony 就一直没再谈过恋爱,离上一次的初恋也已经过去两年。一个巧合的机会,Tony 终于遇上了自己的喜欢的人,她叫 Jenny,有一头长发,天生爱笑、声音甜美、性格温和……作为一个程序员的 Tony,直男癌的症状也很明显:天生木讷、不善言辞。Tony 自然不敢正面表白,但他也有自己的方式,以一种传统书信的方式,展开了一场暗流涌动的追求……经历了一次次屡战屡败,屡败屡战的追求之后,Tony 和 Jenny 终于原创 2020-05-21 18:25:28 · 265 阅读 · 5 评论 -
小白机器学习中的数学
高斯噪声:最小二乘线性估计的新视角从平面线性拟合谈起我们知道,线性回归是最简单的一种数据拟合,说的直白点,我们举平面上的例子来看,平面上有若干个样本点,我们的目标就是去画一条直线去拟合这些样本点。如果你对拟合这两个字还不是吃得很透,我们下面慢慢来介绍。从高斯噪声的角度看最小二乘高斯噪声是如何和最小二乘估计联系起来的?也就是换句话说,我们如何从概率的视角去审视最小二乘估计?下面我们来重点介绍这个话题。我们思考一个问题,通过线性拟合,我们能否让直线精确无误的通过每一个样本点,使得拟合出来的直线的误差为原创 2020-05-21 00:24:18 · 232 阅读 · 0 评论 -
小刘总爬虫
学习爬虫,最基础的便是模拟浏览器向服务器发出请求,那么我们需要从什么地方做起呢?请求需要我们自己来构造吗?需要关心请求这个数据结构的实现吗?需要了解 HTTP、TCP、IP 层的网络传输通信吗?需要知道服务器的响应和应答原理吗?可能你无从下手,不过不用担心,Python 的强大之处就是提供了功能齐全的类库来帮助我们完成这些请求。利用 Python 现有的库我们可以非常方便地实现网络请求的模拟,常见的库有 urllib、requests 等。拿 requests 这个库来说,有了它,我们只需要关心请求的链原创 2020-05-20 00:08:06 · 160 阅读 · 0 评论 -
周某打家劫舍问题
窃-格瓦拉计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被周某闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。示例 1:输入: [1,2,3,1]输出: 4解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。示例 2:输入: [2,7,9,3,原创 2020-05-17 23:39:52 · 98 阅读 · 1 评论 -
小刘盲拆动态规划
最大子序和给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。示例:输入: [-2,1,-3,4,-1,2,1,-5,4],输出: 6解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。python实现:class Solution(object): def maxSubArray(self, nums): if not nums原创 2020-05-16 02:14:24 · 155 阅读 · 1 评论 -
简单的回归分析
最近在看慕课上北大开的数据结构和算法Python版,老师讲的深入浅出,我会不断输出课上的心得体会,与大家共同讨论,共同进步。Python算法之回归分析回归分析是一种用于数据分类的回归模型。这个模型非常简单,事实上,它是一个线性分类器。无论如何,当你想要去探索你的数据的时候,这是一个很好的出发点。很容易编程,完全可以速成。且模型是解释性的模型,也就是说模型将告诉你每个特性对因变量的影响。绿色和蓝色-正确的分类 红色-错误分类首先,输入的数据可以通过多项式特征手动扩原创 2020-05-09 12:33:55 · 552 阅读 · 0 评论 -
小刘学python——快速排序
快速排序–python实现快速排序的概念相信大家都很容易理解,下面这个算法是基于同样想法的另一种算法,其中利用到了分区。如果实施正确,这是一种非常有效的算法,在预期的O(nlog n) 时间内运行,乘法常数非常低,大约为2。需要注意的是,该算法的标准版本仅在唯一数据上是线性的。如果元素出现多次,性能会下降。救生器是一种3向快速排序,它将数据分成三个分区,较低、较高和类似于pivot区。另一个注...原创 2020-05-08 12:24:52 · 154 阅读 · 0 评论