MindSpore Serving基于昇腾910B实现大模型部署

本文介绍了MindSporeServing,一个用于将大模型部署到生产环境的轻量级服务组件。它解决了模型提交、部署和用户访问的问题,支持简单易用、定制化服务、批处理以及高性能扩展。文章详细描述了组件构成、功能特点和示例代码片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Why MindSpore Serving

大模型时代,作为一个开发人员更多的是关注一个大模型如何训练好、如何调整模型参数、如何才能得到一个更高的模型精度。而作为一个整体项目,只有项目落地才能有其真正的价值。那么如何才能够使得大模型实现落地?如何才能使大模型项目中的文件以app的形式呈现给用户?

解决这个问题的一个组件就是Serving(服务),它主要解决的问题有:

  • 模型如何提交给服务;
  • 服务如何部署;
  • 服务如何呈现给用户;
  • 如何应用各种复杂场景等待

MindSpore Serving就是为了实现将大模型部署到生产环境而产生的。

MindSpore Serving是一个轻量级、高性能的服务模块,旨在帮助MindSpore开发者在生产环境中高效部署在线推理服务。当用户使用MindSpore完成模型训练后,导出MindIR,即可使用MindSpore Serving创建该大模型的推理服务。

MindSpore Serving实现的是一个模型服务化的部署,也就是说模型以线上的形式部署在服务器和云上,客户通过浏览器或者客户端去访问这个服务,将需要进行推理的输入内容发送给服务器,然后服务器将推理的结果返回给用户。

二、Component

MindSpore Serving由三部分组成,分别是客户端(Client)、Master和Worker。

  • 客户端是用户节点,提供了gRPC和RESTful的访问。

  • Master是一个管理节点,管理所有Worker的信息,包括Worker有哪些模型的信息;Master也是一个分化节点,接收到了客户端的请求之后,会根据请求的内容,结合当前管理的Worker节点的信息进行分发,将请求分发给不同的Worker执行。

  • Worker是一个执行节点,会执行加载、模型的更新,在接收到Master转发的请求之后,会将请求进行组装和拆分,然后做前处理、推理和后处理,执行完之后将结果返回给Master,Master再将结果返回给客户端。

三、Features

1.简单易用:
对客户端提供了gRPC和RESTful的服务,同时又提供了服务的拉起、服务的部署和客户端的访问,提供了简单的python接口,通过python接口,用户可以很方便的定制和访问部署服务,只需要一行命令就能够完成一件事。

2.提供定制化的服务:
对于模型来说输入和输出一般是固定的,而对于用户来说输入和输出可能是多变的,这就需要一个预处理模块,将模型的输入转为一个模型可以识别的输入。同时还需要一个后处理模块,给用户提供定制化的服务,针对模型可以定制方法classifly_top,用户根据需要去写前处理和后处理的操作。对于客户端来说只要指定模型名和方法名就能实现推理的结果。

3.支持批处理:
主要是针对具有batchsize维度的文本来说。batchsize实现了文本的并行,在硬件资源足够的情况下,batchsize可以很大地提高性能。对于MindSpore Serving来说,用户一次性发送的请求是不确定的,因此Serving分割和组合一个或者多个请求以匹配用户模型的batchsize。例如batchsize=2,但是有三个请求发过来,这时候就会将两个请求合并处理,到后面再拆分,这样就实现了三个请求的并行,提高了效率。

  1. 高性能扩展:
    MindSpore Serving所使用的算子引擎框架是MindSpore框架,具有自动融合和自动并行的高性能,再加上MindSpore Serving本身具有一个高性能的底层通信能力,客户端可以进行多实例组装,模型支持批处理,多模型之间支持并发,预处理和后处理支持多线程的处理。客户端和Worker可以实现扩展的,因此它也实现了一个高扩展性。

四、Demo

基于昇腾910B3

start_agent.py
from agent.agent_multi_post_method import *
from multiprocessing import Queue

from config.serving_config import AgentConfig, ModelName


if __name__ == "__main__":
    startup_queue = Queue(1024)
    startup_agents(AgentConfig.ctx_setting,
                   AgentConfig.inc_setting,
                   AgentConfig.post_model_setting,
                   len(AgentConfig.AgentPorts),
                   AgentConfig.prefill_model,
                   AgentConfig.decode_model,
                   AgentConfig.argmax_model,
                   AgentConfig.topk_model,
                   startup_queue)

    started_agents = 0
    while True:
        value = startup_queue.get()
        print("agent : %f started" % value)
        started_agents = started_agents + 1
        if started_agents >= len(AgentConfig.AgentPorts):
            print("all agents started")
            break

    # server_app_post.init_server_app()
    # server_app_post.warmup_model(ModelName)
    # server_app_post.run_server_app()

client/server_app_post.py
import asyncio
import json
import logging
import signal
import sys
import uuid
from multiprocessing import Process

import uvicorn
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from sse_starlette.sse import EventSourceResponse, ServerSentEvent

from client.client_utils import ClientRequest, Parameters
from config.serving_config import SERVER_APP_HOST, SERVER_APP_PORT
from server.llm_server_post import LLMServer

logging.basicConfig(level=logging.DEBUG,
                    filename='./output/server_app.log',
                    filemode='w',
                    format=
                    '%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s')

app = FastAPI()
llm_server = None


async def get_full_res(request, results):
    all_texts = ''
    async for result in results:
        prompt_ = result.prompt
        answer_texts = [output.text for output in result.outputs]
        text = answer_texts[0]
        if text is None:
            text = ""
        all_texts += text

    ret = {
   
        "generated_text": all_texts,
    }
    yield (json.dumps(ret, ensure_ascii=False) + '\n').encode("utf-8")


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值