基于TGI的大模型推理框架适配之昇腾部署

docker run -it -u root --ipc=host --network host --device=/dev/davinci0 --device=/dev/davinci1 --device=/dev/davinci2 --device=/dev/davinci3 --device=/dev/davinci4 --device
### 大模型推理服务框架的技术实现比较 #### HuggingFace Text Generation Inference (TGI) 特性分析 Hugging Face 的 TGI 是一种专注于大模型推理部署框架,其设计目标在于平衡服务效率与业务灵活性。该框架支持多种主流大模型以及先进的量化技术,允许用户在资源有限的情况下高效运行大规模语言模型[^1]。具体而言: - **多语言支持**:TGI 结合 Rust 和 Python 实现高性能和易用性的统一,其中核心推理部分采用 Rust 编写以提升速度,而接口层则保留了 Python 的开发便利性。 - **简单集成能力**:开发者能够通过几行代码快速启动一个本地或云端的大规模语言模型实例,并配置相应的硬件加速选项。 - **性能优化**:相比未经优化的标准 Transformer 推理代码,经 TGI 调优后的版本展现出显著的速度优势,在延迟敏感的应用场景下尤为突出。 #### SWIFT 框架特性概述 SWIFT 则是由阿里巴巴达摩院推出的另一款面向 AIGC 领域的大模型推理和服务框架。除了提供常规的推理功能外,还特别强调以下几个方面的能力增强[^2]: - **轻量级调优工具(Efficient Tuners)** :内置了一系列经过验证有效的参数调整策略,使得即使是中小型计算设备也能流畅执行复杂的 AI 任务。 - **无缝衔接 ModelScope 平台** : 不仅简化了从研发到生产的整个流程, 还促进了社区间的资源共享和技术交流. - **丰富的案例指导** : 提供详尽的文档说明及实际操作指南帮助初学者迅速上手. #### 性能对比总结表 | 功能维度 | HuggingFace TGI | SWIFT | |----------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------| | 开发复杂度 | 较低,适合希望减少定制工作的团队 | 中等偏高,提供更多自定义空间 | | 支持平台范围 | 主要集中在 Linux 系统 | Windows/MacOS/Linux 均兼容 | | 社区活跃程度 | 极高,得益于全球范围内广泛使用者反馈 | 相对较小但增长迅速 | 综上所述,虽然两者都致力于解决相同领域内的挑战——即如何更有效地利用现有软硬件设施来完成高质量的语言理解/生成工作;但由于定位不同(前者偏向通用型解决方案后者更加专业化),所以在某些细节上的取舍也会有所区别。 ```python # 示例代码展示两个框架加载模型的方式差异 from transformers import AutoTokenizer, pipeline import torch def load_tgi_model(): tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom") model_pipeline = pipeline('text-generation', model="bigscience/bloom", device_map='auto') return model_pipeline def load_swift_model(): from swift.llm import SwiftForCausalLM model = SwiftForCausalLM.from_pretrained("Qwen/Qwen-Max") return model.eval() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值