人工智能搜索算法案例分析

启发式搜索算法

启发式搜索(有信息搜索),是相对于广度优先搜索和深度优先搜索这类无信息搜索的搜索算法。该类算法是基于能够获得辅助算法的额外信息进行运算,这些信息称为启发信息。其中启发式搜索中最具代表性的就是贪婪最佳优先算法和A*算法。1

启发式搜索算法满足三个条件:

  • 具有启发函数:估计结点n距离达到目标还需要多少代价。在求最短路径的问题中,该函数为以相同的速度到达两个城市间的时间代价。
  • 具有评价函数:根据搜索算法的不同,评价函数不同。评价函数是用以选择最优的边缘结点。
  • 辅助信息:即启发信息,是用以额外地帮助搜索的信息。例如,各结点到目标结点的最短距离。

树搜索

贪婪最佳优先搜索

贪婪最佳优先算法,可以看作是广度优先算法的改进版,其评价函数=启发函数。

案例场景

贪婪最佳优先搜索算法经常用于解决路径的规划问题,依据不同的评判标准来寻找符合要求的道路,实际应用例如导航的路线规划,游戏中NPC移动路径等等。
其中最典型的就是单源最短路径问题。

采用的解决方案

首先把起点到所有点的距离存下来找个最短的,然后松弛一次再找出最短的,所谓的松弛操作就是,遍历一遍看通过刚刚找到的距离最短的点作为中转站会不会更近,如果更近了就更新距离,这样把所有的点找遍之后就存下了起点到其他所有点的最短距离。

改进点

不足:

  • 贪婪最佳优先搜索不是最优的;
  • 启发函数代价最小化这一目标会对错误的起点比较敏感;
  • 贪婪最佳优先搜索也是不完备的;
  • 在最坏的情况下,贪婪最佳优先搜索的时间复杂度和空间复杂度都是O(b^m)(b是节点的分支因子数目、m是搜索空间的最大深度)。

改进:
从启发函数上入手,设计一个更优的启发函数。由此我们引入A*算法

辅助信息:任意一个城市与目的城市之间的直线距离。
其他应用场景:区间调度问题、找零问题等等。

A*搜索算法

案例场景

最经典的“罗马尼亚度假问题”,即找到从初始地点Arad到目的地点Bucharest的一条路径。
在这里插入图片描述

采用的解决方案

定义评价函数:f(n)=g(n)+h(n)

  • g(n)表示从起始节点到节点n的开销代价值,h(n)表示从节点n到目标节点路径中所估算的最小开小代价值。
  • f(n)可视为经过节点n、具有最小开销代价值的路径。
  • 为了保证A*算法是最优,需要启发函数h(n)是可容的和一致的(或者也称是单调的)。

改进点

不足:
在每次扩展结点时,总是把所有的待测节点存入内存中,空间复杂度很高,因此考虑优化,引出递归最佳优先搜索。
改进:
递归最佳优先搜索(RBFS)

  • 记录当前节点的祖先可得到的最佳可替换路径的f值。
  • 如果当前的f值超过了这个限制,则递归将转回到替换路径。
  • 向上回溯改变f值到它的孩子的最佳f 值
  • 重复扩展这个上个节点,因为仍有可能存在较优解。

辅助信息:历史耗程
其他应用场景:游戏、机器人自动寻路

Minimax搜索

案例场景

Minimax算法又名极小化极大算法,是一种找出失败的最大可能性中的最小值的算法。Minimax算法常用于棋类等由两方较量的游戏和程序,这类程序由两个游戏者轮流,每次执行一个步骤。我们众所周知的五子棋、象棋等都属于这类程序,所以说Minimax算法是基于搜索的博弈算法的基础。该算法是一种零总和算法,即一方要在可选的选项中选择将其优势最大化的选择,而另一方则选择令对手优势最小化的方法。一个经典的案例场景就是“井字棋”问题。
Minimax搜索在井字棋中的运用

采用的解决方案

“井字棋”问题中,在初始状态,MIN有9个可能的走法。游戏交替执行,MAX下X,MIN下O,直到到达了树的叶节点对应的终止状态,也就是说一方的三个棋子连成一条直线或者所有棋位都填满了。叶节点上的数字指示了这个终止状态对于MAX来说的效用值;值越高被认为对MAX越有利,而对MIN则越不利。所以MAX的任务是利用搜索树(特别是终止状态的效用值)来确定最佳的招数,即求解终止状态为+1的招数。

改进点

不足:

  • Minimax算法往往会生成巨大的分支,尤其是当遇到复杂问题的时候,如果还是依次遍历每一个分支,就会占用巨大的内存。
  • 基础的Minimax算法考虑的对手都会选择最利他(对方尽可能得分)的动作,但是在现实情况中,并非如此。

改进:

  • 采用Alpha-Beta剪枝法对Minimax产生的巨大分支进行修剪。
  • 针对对手的选择选取平均/随机策略。

辅助信息:每一步行动导致局势变化后给出的得分
其他应用场景:分硬币、各种棋类对弈等问题

优化算法

爬山法

案例场景

经典的“八皇后”问题:
在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。如果经过±90度、±180度旋转,和对角线对称变换的摆法看成一类,共有42类。
八皇后问题

采用的解决方案

随机设置一个初始状态,建立一个冲突函数,以相互冲突的皇后个数来评价状态的优劣。
三条线:列线、主副对角线,皇后的冲突个数比较好计算。假设某条线上有n个皇后,则冲突个数为n*(n-1)*0.5。
每更新一次状态,即每挪动一个皇后,都有56个邻居状态。计算这些新邻居状态的冲突值,选择冲突值最小的邻居状态作为下一个状态。如果本次的初始状态可以由爬山法寻找到最优解,那么爬山法的收敛速度是很快的,因此寻找新邻居的次数如果大于100次,可以认为在这个初始状态下,爬山法寻找不到解。

改进点

不足:
爬山算法即是模拟爬山的过程,随机选择一个位置爬山,每次朝着更高的方向移动,直到到达山顶,即每次都在临近的空间中选择最优解作为当前解,直到局部最优解。这样算法会陷入局部最优解,能否得到全局最优解取决于初始点的位置。初始点若选择在全局最优解附近,则就可能得到全局最优解。

  • 局部最大:某个节点比周围任何一个邻居都高,但是它却不是整个问题的最高点。
  • 高地:也称为平顶,搜索一旦到达高地,就无法确定搜索最佳方向,会产生随机走动,使得搜索效率降低。
  • 山脊:搜索可能会在山脊的两面来回震荡,前进步伐很小。

爬山法经常被卡在某个局部最大值(或最小代价处),其成功率低到只有14%

改进:

  • 使用随机爬山法:随机选择一个优于当前状态的状态
  • 首选爬山法:首先选择第一个优于当前状态的状态、对于上千后继比较管用
  • 随机重启爬山法:先随机生成一个初始状态,若不行再随机生成一个初始状态,直到找到目标

辅助信息:邻居状态
其他应用场景:求解最短路径(效果一般)、选址问题、求解火电机组的经济发电调度、串行计算中大规模矩阵带宽缩减

模拟退火算法

案例场景

模拟退火算法来源于固体退火原理,故最经典的应该就是解决“固体物质的退火”问题:
将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

采用的解决方案

模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。

模拟退火算法可细分为四个步骤:

  1. 是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
  2. 是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
  3. 是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若ΔT<0则接受S′作为新的当前解S,否则以概率exp(-ΔT/T)接受S′作为新的当前解S。
  4. 是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

改进点

不足:
存在三个参数问题:

  • 温度T的初始值设置问题:温度的初始值T设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。
  • 退火速度问题(每个T值的迭代次数):模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索是相当必要的,但这也需要计算时间。循环次数增加必定带来计算开销的增大。
  • 温度管理问题:温度管理问题也是模拟退火算法难以处理的问题之一。

改进:
结合其他算法进行组合优化。
使用以下降温方式(为了保证较大的搜索空间,α一般取接近于1的值,如0.95、0.9):在这里插入图片描述

辅助信息:时间信息
其他应用场景:VLSI设计、图像识别和神经网计算机的研究、公路隧道内轮廓优化、作业车间调度问题等

遗传算法

案例场景

“猜句子”问题:给定目标句子,由随机字符组成的句子演化成目标句。

例:
基础字符集:abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
目标句:Genetic algorithm is a search algorithm used in computational mathematics to solve optimization.

采用的解决方案

  1. 生成初始个体:接下来需要生成初始个体,即由字符集合随机生成一个与目标字符串长度相等的字符串。
  2. 适应度:遗传算法提供的适应度值是引擎获得的唯一反馈,可以引导其走向一个解决方案。在这个问题中,适应度值为当前字符串与目标字符串匹配的字符个数。
  3. 变异:将字符串的任意两个位置字符调换,即可完成变异操作。

改进点

不足:

  • 收敛速度慢
  • 局部搜索能力差
  • 控制变量多
  • 无缺点的终止准则

改进:

  1. 双倍体遗传算法:完成选择、交叉、变异操作后增加一个显隐性重排操作,增加算法随机性,并提高隐性染色体里优良基因的存活。
  2. 双种群遗传算法:在执行完基础操作后增加一步杂交操作,交换种群之间优秀个体携带的遗传信息,以此来达到更高的平衡态,跳出局部最优。
  3. 自适应遗传算法:让交叉概率与变异概率能随适应度变化自动改变,有利于跳出局部最优,也有利于个体生存;这能够保持群体多样性和遗传算法的收敛性。

辅助信息:群体大小、遗传算法的终止进化代数、交叉概率、变异概率
其他应用场景:组合优化、机器学习、信号处理、自适应控制和人工生命

蚁群算法

案例场景

“旅行商”问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。
在这里插入图片描述

采用的解决方案

假如蚁群中所有蚂蚁的数量为m,所有城市之间的信息素用矩阵pheromone表示,最短路径为bestLength,最佳路径为bestTour。
每只蚂蚁都有自己的内存,内存中用一个禁忌表来存储该蚂蚁已经访问过的城市,表示其在以后的搜索中将不能访问这些城市;还有用另外一个允许访问的城市表来存储它还可以访问的城市;另外还用一个矩阵来存储它在一个循环(或者迭代)中给所经过的路径释放的信息素;还有另外一些数据,例如一些控制参数(α,β,ρ,Q),该蚂蚁行走玩全程的总成本或距离。
求解步骤:

  1. 初始化
  2. 为每只蚂蚁选择下一个节点。
  3. 更新信息素矩阵
  4. 检查终止条件
  5. 输出最优值

改进点

不足:

  • 收敛速度慢。蚁群算法中信息素初值相同,选择下一个节点时倾向于随机选择。虽然随机选择能探索更大的任务空间,有助于找到潜在的全局最优解,但是需要较长时间才能发挥正反馈的作用,导致算法初期收敛速度较慢。
  • 局部最优问题。蚁群算法具有正反馈的特点,初始时刻环境中的信息素完全相同,蚂蚁几乎按随机方式完成解的构建,这些解必然会存在优劣之分。在信息素更新时,算法陷入局部最优,且难以跳出局部最优。
  • 优化能力问题。蚁群算法中参数众多并且具有一定的关联性,虽然蚁群算法在很多领域都有广泛应用,但是参数选择更多是依赖经验和试错,不恰当的初始参数会减弱算法的寻优能力。当进行路径规划时,为避免形成环形路径或者重复访问某些节点在算法中设置禁忌表,但是禁忌表很容易造成“死锁”现象,减少种群中的有效蚂蚁数量,降低算法的优化效率。
  • 种群多样性与收敛速度的矛盾。种群多样性对应于候选解在问题空间的分布。个体分布越均匀,种群多样性就越好,得到全局最优解的概率就越大,但是寻优时间就越长;个体分布越集中,种群多样性就越差,不利于发挥算法的探索能力。正反馈加快了蚁群算法的收敛速度,却使算法较早地集中于部分候选解,因此正反馈降低了种群的多样性,也不利于提高算法的全局寻优能力。

改进:

  • 精英策略的蚂蚁系统:AS算法中,蚂蚁在其爬过的边上释放与其构建路径长度成反比的信息素量,蚂蚁构建的路径越好,则属于路径的各个边上的所获得的信息素量就越多,这些边以后在迭代中被蚂蚁选择的概率也就越大。
  • 基于排列的蚂蚁系统:在精英策略的基础上,更新更好进程上的信息素,选择的标准是其行程长度决定的排序;每只蚂蚁放置信息素的强度通过排序加权处理确定。
  • 最大最小蚂蚁系统:该算法修改了AS的信息素更新方式,只允许迭代最优蚂蚁(在本次迭代构建出最短路径的蚂蚁),或者至今最优蚂蚁释放信息素;路径上的信息素浓度被限制在[MAX,MIN ]范围内;另外,信息素的初始值被设为其取值上限,这样有助于增加算法初始阶段的搜索能力。为了避免搜索停滞,问题空间内所有边上的信息素都会被重新初始化。

辅助信息:信息素重要程度、启发式因子重要程度、信息素蒸发系数、ant蚂蚁数量、iter迭代次数
其他应用场景:CVRP问题、调度问题、准直图像处理等

粒子群搜索

案例场景

粒子群搜索算法比较简单的应用场景是函数优化问题。
例:已知函数y=f(x1,x2)=x1^2 + x2^2,其中-10<=x1,x2<=10,求解y的最小值。

采用的解决方案

  1. 初始化:设置种群大小,在搜索空间中随机初始化每个解的速度与位置,计算适应函数值,并得到粒子的历史最优位置和群体的全局最优位置。
  2. 更新粒子的速度和位置:根据自身的历史最优位置和全局的最优位置,更新每个粒子的速度和位置。
  3. 评估粒子的适应度函数值:更新例子的历史最优位置和全局的最优位置。
  4. 如果满足结束条件,则结束;若不满足,执行步骤二并继续按序执行。

改进点

不足:
PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题。

改进:

  • 调整PSO的参数来平衡算法的全局探测和局部开采能力.如Shi和Eberhart对PSO算法的速度项引入了惯性权重,并依据迭代进程及粒子飞行情况对惯性权重进行线性(或非线性)的动态调整,以平衡搜索的全局性和收敛速度.2009年张玮等在对标准粒子群 算法位置期望及方差进行稳定性分析的基础上,研究了加速因子对位置期望及方差的影响,得出了一组较好的加速因子取值。
  • 设计不同类型的拓扑结构,改变粒子学习模式,从而提高种群的多样性,Kennedy等人研究了不同的拓扑结构对SPSO性能的影响.针对SPSO存在易早熟收敛,寻优精度不高的缺点,于2003年提出了一种更为明晰的粒子群算法的形式:骨干粒子群算法(Bare Bones PSO,BBPSO)。
  • 将PSO和其他优化算法(或策略)相结合,形成混合PSO算法.如曾毅等将模式搜索算法嵌入到PSO算法中,实现了模式搜索算法的局部搜索能力与PSO算法的全局寻优能力的优势互补.
  • 采用小生境技术。小生境是模拟生态平衡的一种仿生技术,适用于多峰函数和多目标函数的优化问题.例如,在PSO算法中,通过构造小生境拓扑,将种群分成若干个子种群,动态地形成相对独立的搜索空间,实现对多个极值区域的同步搜索,从而可以避免算法在求解多峰函数优化问题时出现早熟收敛现象. Parsopoulos提出一种基于“分而治之”思想的多种群PSO算法,其核心思想是将高维的目标函数分解成多个低维函数,然后每个低维的子函数由一个子粒子群进行优化,该算法对高维问题的求解提供了一个较好的思路。

不同的发展方向代表不同的应用领域,针对不同领域的不同问题求解时选择最合适的方法。

辅助信息:粒子位置和速度
其他应用场景:函数优化、神经网络训练、模糊系统控制


  1. 参考文章:https://blog.csdn.net/qq_44250808/article/details/115630739 ↩︎

课程介绍 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆尝试。 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 ? 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 ? 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 ? 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 AI 取代?企业应该如 取代?企业应该如 何升 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 AI 与人类 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 通过本课程 拓展一下思维,期待收获 拓展一下思维,期待收获 拓展一下思维,期待收获 拓展一下思维,期待收获 能多一些 。包含:机器 包含:机器 包含:机器 学习 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 各领域的应用知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值