用平面波展开法计算二维晶格势下色散关系的原理

文章介绍了平面波展开法在求解晶体波动性质中的应用,包括布洛赫定理、薛定谔方程以及能带结构的计算。通过将波函数表示为平面波的线性组合,结合晶格周期性和傅里叶变换,可以解决二维晶格的色散关系。文章还提供了一个使用Matlab进行计算的简单示例代码。
摘要由CSDN通过智能技术生成

平面波展开法是一种求解晶体波动性质的方法,它是将晶体的波函数表示为平面波的线性组合来求解。具体原理如下:

假设有一个二维晶格,晶格基矢为$\vec{a_{1}}$和$\vec{a_{2}}$,对于一个平面波来说,它可以用以下公式表示:

$$
\psi_{\vec{k}}(\vec{r})=e^{i\vec{k}\cdot\vec{r}},
$$

其中,$\vec{k}$为波矢,$\vec{r}$为位置矢量。

根据布洛赫定理,一个具有周期性势场的晶体中的波函数应该具有以下形式:

$$
\psi_{\vec{k}}(\vec{r})=u_{\vec{k}}(\vec{r})e^{i\vec{k}\cdot\vec{r}},
$$

其中,$u_{\vec{k}}(\vec{r})$为布洛赫函数,它与平面波是等价的。布洛赫函数应该具有晶格周期性,即:

$$
u_{\vec{k}}(\vec{r}+\vec{R})=u_{\vec{k}}(\vec{r}),
$$

其中,$\vec{R}=n_{1}\vec{a_{1}}+n_{2}\vec{a_{2}}$ 为晶格矢量。

因此,我们可以将布洛赫函数表示为晶格矢量 $\vec{G}$ 的平面波的线性组合:

$$
u_{\vec{k}}(\vec{r})=\sum_{\vec{G}}C_{\vec{k},\vec{G}}e^{i\vec{G}\cdot\vec{r}},
$$

其中,$C_{\vec{k},\vec{G}}$为系数,$\vec{G}$为倒格矢。

将布洛赫函数代入薛定谔方程,可以得到:

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
平面波展开计算周期性结构(如晶体)能带结构的一种常用方。对于声子晶体,可以将其看作具有周期性结构的介质,因此也可以使用平面波展开计算其带隙特性。 在二维声子晶体中,声波的传播方向被限制在平面内,因此只需要考虑平面波二维平面内的展开。假设晶体的基元周期为$a$,则可以将平面波表示为: $$ e^{i\vec{k}\cdot\vec{r}}=e^{ik_xx}e^{ik_yy} $$ 其中$\vec{k}$为波矢,$x$和$y$为晶体平面内的坐标。将平面波代入声子晶体的动力学方程中,可以得到一个本征值问题,其解给出了声子晶体的能带结构。 在实际计算中,需要对波矢$\vec{k}$进行离散化,即将其分解为$k_x=2\pi n_x/L_x$和$k_y=2\pi n_y/L_y$,其中$L_x$和$L_y$为晶体的尺寸,$n_x$和$n_y$为整数。然后,可以将平面波展开为: $$ e^{i\vec{k}\cdot\vec{r}}=\sum_{n_x,n_y}c_{n_x,n_y}e^{i\frac{2\pi}{L_x}n_xx}e^{i\frac{2\pi}{L_y}n_yy} $$ 其中$c_{n_x,n_y}$为系数,需要通过求解本征值问题来确定。将展开后的平面波代入动力学方程中,可以得到一个矩阵本征值问题,其解给出了声子晶体的能带结构和带隙特性。 需要注意的是,由于离散化导致的误差和计算量的增加,平面波展开计算大尺寸的声子晶体时可能会遇到困难。因此,一些改进方,如Wannier函数和投影算子方,已经被提出来用于加速计算
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值