pyTorch(7)——非线性激活

一、ReLU 定义

输入是 batchsize,后面一个 * 表示不进行定义的意思,下面是使用时需要注意的,inplace 指的是替换,是否在原来的地方进行替换。

实例:

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1, -0.5],
                      [-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)

class Tudui(nn.Module):   # 第二步,引入父类中的自定义,跑完 init 方法
    def __init__(self):
        super(Tudui, self).__init__()
        self.relu2 = ReLU()

    def forward(self, input):
      # inplace = False, 所以一定要返回 output
        output2 = self.relu2(input)  # 第四步,把输入的变量带进来算
        return output2   # 第五步:得到输出值

tudui  = Tudui()  # 第一步:引用 class
output = tudui(input)  # 第三步:输入变量
print(output)    # 第六步 打印输出值

二、Sigmoid

网络中有非线性,才可以更好的拟合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值