目录
1.1概述
图像拼接技术,顾名思义,就是将不同的图像拼成 幅大视场、高分辨率的无缝图像的技术。这些源图像可能拍摄于不同的时间,有着不同的拍摄视角,或者拍摄自不同的传感器等。但是这些图像必须满足一个条件,拥有公共部分
。
图像拼接技术的流程主要包括以下五个步骤:

1
)图像预处理
图像预处理包括数字图像处理的基本操作,如去噪、边缘提取、直方图处理
等。建
立图像的匹配模板以及对图像进行变换,如傅里叶变换、小波变换等操作。
2)
图像配准
图像配准就是采用一定的匹配策略,找出待拼接图像中的模板或特征点在参考图像中对应的位置,进而确定两幅图像之间的变换关系。
3) 建立变换模型
根据模板或者图像特征之间的对应关系,计算出数学模型中的各参数值,从而建立两幅图像的数学变换模型。
4)
一坐标变换
根据建立的数学变换模型,将待拼接图像转换到参考图像的坐标系中,完成统
一坐
标变换。
5) 图像融合
将待拼接图像的重合区域进行融合,得到大视场、高分辨率的无缝图像。在上述步骤中,图像配准与图像融合是两个关键技术 图像配准,是图像拼接的基础,一言以蔽之,就是确定待拼接图像的相对位置 图像融合,则是通过特殊手段,消除不同图像之间的差异,包括曝光、色差、运动物体等,使拼接后的图像达到视觉上的
一致性。
1.2图像配准
图像拼接的关键是精确找出相邻两张图像中重叠部分的位置,然后确定两张图像的
变换关系,即图像配准。
配准的目的就是找出一种最能描述待拼接图像之间映射关系的变换模型。
目前常用的空间变换模型有平移变换、仿射变换以及投影变换等。

上述模型可以用8个参数模型来描述 :
1.2.1基于特征的图像配准
基于特征的图像配准是利用图像的明显特征来估计图像之间的变换,而不是利用图像全部信息。这些明显特征,如图像的特征点(角点或关键点)、轮廓和一
些不变
矩等。
基于
SIFT
的配准
算法主要步骤如下:
(
1
)检测
尺度空间极值点
初步确定关键点的位置和所在尺度。

SIFT
特征
是图像
的局部特征,对旋转、尺
度缩放、亮度变化保持不变性,对视角
变化、放射变换、噪声也有
定的健壮性。
1.2.2基于区域的图像配准

1.3最佳缝合查找
实际情况
中待融合的图像往往存在曝光
差异、配准差异以及图像中存在运动物体,这些因素导致
了两幅图像间存在缝隙。为了更好地减轻图像融合的压力,需要在
重叠区
域中找到
一条
最佳的分界线。
方法主要有一些几种:
1、静态图像拼接中缝合线的查找算法比较成熟,主要分为两大类,基于优化能量函数的算法以及基于计算最小差异的算法。
2、与静态图像拼接中的缝合线查找不同,视频拼接中缝合线的查找需要考虑算法实时性和帧间画面 致性约束。实时性是指缝合线查 算法 算速度要快,能够满足视频实时播放的要求 帧间画面一致性是指为 了保证相邻帧画面 致性,帧间缝合线不应剧烈变化。这就要求在查找最佳缝合线时,除了将差异最小作为优化准则之外,还需加入帧间缝合线差异作为约束条件。
详细内容请参看《计算摄影学基础》