目录
噪声的产生是信号在采集、传输以及记录过程中,受到成像设备自身因素和外界环境的影响而产生的。现实中的噪声是随机分布的,事实上,噪声无法完全去除,只能使得重现信号尽可能的接近原始信号,因此,去噪严格意义上只能被称之为降噪。通过去噪可以有效地增大图像信号的信噪比,提高图像质量 ,更好地体现原始图像所携带的信息。
1.1图像去噪的基本概念
图像噪声的分类:
1
)按噪声产生的原因分类
根据噪声产生的原因,可以将噪声分为外部噪声和内部噪声,其中外部噪声指由成像系统的外部因素导致的噪声,
它们是以电磁波或者电流的方式对成像系统的内部产生影响,进而产生噪声。内部噪声主要是由于成像系统内部因素导致的噪声,如光电基本性质所引起的图像噪声。
2)
按噪声与图像信号的关系分类
根据噪声与图像信号之间的关系,可以将噪声噪声分为加性噪声和乘性噪声,其中加性噪声与图像信号强度无关,乘性噪声与信号强度相关。
3)
按概率密度函数
(PDF)
分类
从噪声的概率密度分布情况来看,可以将图像噪声分为高斯噪声、瑞利噪声、伽马噪声、指数噪声、均匀噪声和脉冲噪声等。
1.2 去噪效果评价标准
目前,对去噪效果进行定量的质量评价,主要分为两种客观评价峰值信噪比(PSNR)和结构相似度测量(SSIM)。
PSNR的定义为:

式中L
表示的是图像
的动态
范围(8
位/像素的图像);
MSE
表示的是原始图像和
失真
图像之
间的均
方误差。
SSIM
定义为:

1.3传统去噪方法(简单介绍)
- 基于空间域的中值滤波
中值滤波是一种常见的非线性平滑滤波器,图像去噪中所使用的中值滤波方法的基本原理为:将图像中一点的值用该领域内各点的中值替代。
- 基于小波域的小波阈值去噪

目前,全局阈值
主要有以下
几种:

折中。
- 基于PDF的图像去噪
这种方法通过建立噪声图
像为某非线性 PDE
的初始条件,然后求解这个
PDE
,得到在不同时刻的解,即为滤波
结果。
- 全变分图像去噪
这种方法基于变分法的思想来确定图像的能量函数,通过对图像能量函数进行最小化来达到平滑去噪的目的。
1.4 非局部均值去噪(NLmeans)
非局部均值滤波的基本思想是:
当前像素点
的灰度值由图像中所有与其结构相似的像素点的灰度值加权平
均得到,结构越相似,权值越大。
详细参看之前博客
1.5 BM3D算法(参看之前博客)
1.6基于稀疏模型的去噪方法
这类方法通常将图像分成小块,然后再一定的过完备字典下,对每个小块进行稀疏表示,以达到去噪的目的,取得较好的去噪效果。
稀疏性可用于图像去噪,主要是基于以下几个特征:
(1)自适应性。稀疏分解不需要先验图像信号与噪声的统计特性,通过信号在过完备字典上分解,用以表示信号基,可自适应地根据图像信号本身特点灵活选取。
(2)
不相关性。原始真实图像信号与观测图像信号之间的不相关性
图像有用信号间存在某种内在联系,而噪声分布则是孤立的、随机的、离散的。
(3)原子化。借助于原子能量特性,对图像信号进行稀疏分解
。通
过形成大小两类原子,分别提取时域上分布比较长的信息成分与比较短的信息成分
(信息
细节)
,利用过完备原子库的稀疏性表示图像。
详细请参看《计算摄影学基础》
总结
绝大多数现有的图像去噪算法是基于单幅图像的,随着近年来,在安防领域从模拟照相机到高清数码摄像机的更新换代,视频去噪技术开始有了广泛的应用,去噪也成为摄像机处理中一个很重要的模块,称为评价摄像机性能的主要指标
。因为传统的图像去噪主要针对图像进行滤波,
未考虑视频信号的时域与空域相关性。没有充分利用视频信
号的时
联系进行去噪,
因此,在原有的帧内2D空间的去噪技术降噪的基础上,增加
了帧与帧之间降噪的功能的视频去噪方法也称为3D降噪。
详情请参看《计算摄影学基础》