Beyond a Gaussian Denoiser: Residual Learning of
Deep CNN for Image Denoising
背景和想要解决的问题:
图像去噪:
图像去噪的目标是根据图像退化模型y = x + v从噪声观测y中恢复干净的图像x。在本篇中提出的DeCNN不是直接输出去噪图像x,而是用于预测残差图像v,即噪声观测值与潜在干净图像之间的差值。就是decnn预测v值然后用y-v算出x。
问题:
之前的模型如NSS模型,稀疏模型,马尔可夫模型等等用来建模图像先验(即指利用图像本身就有的性质或特征如平滑性先,验稀疏性先验来进行建模和优化)主要回收两个问题影响,首先,这些方法通常在测试阶段涉及复杂的优化问题,使得去噪过程非常耗使时。因此,大多数基于先验的方法很难在不牺牲计算效率的情况下实现高性能。其次型通常是非凸的,并且涉及几个手动选择的参数,这为提高去噪性能提供了一些余地。而且还有一点,它们训练的是特定噪声水平的特定模型,并且在盲目图像去噪方面受到限制。
创新点:
提出来一种依靠残差学习还有批处理归一化的深度卷积神经网络
Cnn在图像去噪处理的优点:
首先,具有非常深结构的CNN可以有效地提高利用图像特征的容量和灵活性。其次,训练CNN的正则化和学习方法取得了相当大的进展,包括整流线性单元(ReLU)、批归一化和残差学习。这些方法都可以采用在CNN中加快训练过程,提高去噪性能。第三,CNN常适合在现代强大的GPU上进行并行计算,可以利用它来提高运行时性能。
模型架构:
:(i)网络架构设计和:修改了VGG网络,使其适合图像去噪,并根据最先进的去噪方法中使用的有效补丁大小来设置网络的深度。(ii)学习模型:采用残差学习公式,并将其与批处理归一化相结合,以实现快速训练和提高去噪性能。
采用批归一化和残差学习的原因:
一方面,残差学习受益于批处理归一化。因为批归一化为cnn提供了一些点比如缓解内部协变量移位问题。从图2中可以看出,尽管没有批处理归一化的残差学习(绿线)收敛速度很快,但它还是不如有批处理归一化的残差学习(红线)。
另一方面,批归一化受益于残差学习。如图2所示,在没有残差学习的情况下,批归一化甚至对收敛有一定的不利影响(蓝线)。有了残差学习,可以利用批归一化来加速训练,同时提高性能(红线)。
综上所述,残差学习和批归一化的结合不仅可以加速和稳定训练过程,还可以提高去噪性能。
实验:
测试集:我们使用两个不同的测试数据集进行全面评估,一个是来自伯克利分割数据集(BSD68)[12]的包含68幅自然图像的测试数据集,另一个包含12幅图像,如图三
图8显示了DnCNN-B/ CDnCNN-B模型相对于不同噪声水平下BM3D/CBM3D的平PSNR改进。可以看出,DnCNN-B/ CDnCNN-B模型在广泛的噪声水平范围内始终表现优于BM3D/CBM3D。实验结果证明了训练单个DnCNN-B模型处理盲高斯的可行性。(下面进行实验来证明decnn在三种通用图像去噪任务中都表现良好(盲高斯去噪、SISR和JPEG图像去块))
对于高斯去噪,我们使用最先进的BM3D和TNRD进行比较BSD68数据集
对于SISR,我们考虑了两种最先进的方法,即TNRD和VDSR[35]。
对于JPEG图像块化,我们的DnCNN-3与两种最先进的方法进行了比较.
结论
本文提出了一种用于图像去噪的深度卷积神经网络,其中采用残差学习从噪声观测中分离噪声。将批归一化和残差学习相结合,加快了训练过程,提高了去噪性能。我们的单一DnCNN模型具有处理未知噪声水平下的盲高斯去噪的能力。此外,我们还证明了训练单个DnCNN模型处理三种通用图像去噪任务的可行性