实数系基本定理

单调有界定理

实数系中,有界的单调数列必有极限。

证明:
设{ a n a_{n} an}为有上界的递增数列,把这个数列的各项表示成十进制无尽小数:
a 1 = A 1 . b 11 b 12 b 13 . . . a 2 = A 2 . b 21 b 22 b 23 . . . a 3 = A 3 . b 31 b 32 b 33 . . . . . . a_{1}=A_{1}.b_{11}b_{12}b_{13}... \\ a_{2}=A_{2}.b_{21}b_{22}b_{23}... \\ a_{3}=A_{3}.b_{31}b_{32}b_{33}... \\ ... a1=A1.b11b12b13...a2=A2.b21b22b23...a3=A3.b31b32b33......
其中, A 1 , A 2 , A 3 . . . A_{1},A_{2},A_{3}... A1,A2,A3...都是整数, b i j b_{ij} bij都是0-9之间的数。现在从上到下考察 A i A_{i} Ai,因为 a n a_{n} an是个有界的数列,所以不可能 A i A_{i} Ai无限增大,到某一行 N 0 N_{0} N0后, A i A_{i} Ai不变,记最大为A,接下来再考察第二列 b 11 , b 21 , b 31 . . . b_{11},b_{21},b_{31}... b11,b21,b31...,不过只需要将注意力放在第 N 0 N_{0} N0行之后,找到之后这一列的最大值记为 x 1 x_{1} x1,然后接着重复这一步骤往下面列寻找。我们会得到数码 x 2 , x 3 . . . x_{2},x_{3}... x2,x3...和相应的整数 N 2 , N 3 . . . N_{2},N_{3}... N2,N3...。容易看出, a = A . x 1 x 2 x 3 . . . a=A.x_{1}x_{2}x_{3}... a=A.x1x2x3...应该是我们的极限。下面证明:
对于任意的 ε > 0 \varepsilon>0 ε>0,取 m ∈ N ∗ m \in N^{*} mN,使得 1 0 − m < ε 10^{-m}<\varepsilon 10m<ε,那么对于所有的 n > N m n>N_{m} n>Nm a n a_{n} an的整数部分以及小数点后的前m位上的数码与a是一样的,因此我们有 ∣ a n − a ∣ ≤ 1 0 − m < ε |a_{n}-a|\leq 10^{-m}<\varepsilon ana10m<ε。这样就证明了{ a n a_{n} an}的极限是 a = A . x 1 x 2 x 3 . . . a=A.x_{1}x_{2}x_{3}... a=A.x1x2x3...


闭区间套定理

I n = [ a n , b n ] I_{n}=[a_{n},b_{n}] In=[an,bn],并且 I 1 ⊃ I 2 ⊃ I 3 . . . I_{1}\supset I_{2}\supset I_{3}... I1I2I3...。如果这列区间的长度 ∣ I n ∣ = b n − a n → 0 ( n → ∞ ) |I_{n}|=b_{n}-a_{n}\to 0(n\to \infty) In=bnan0(n),那么交集 ⋂ I n ( n → ∞ ) \bigcap I_{n}(n\to \infty) In(n)含有唯一的点。

证明:
左端点{ a n a_{n} an}是个单调递增的数列,右端点{ b n b_{n} bn}是个单调递减的数列,并且{ a n a_{n} an}有上界 b 1 b_{1} b1,{ b n b_{n} bn}有下界 a 1 a_{1} a1,由单调有界定理可得, lim ⁡ n → ∞ a n = a lim ⁡ n → ∞ b n = b \lim_{n\to \infty}a_{n}=a \\ \lim_{n\to \infty}b_{n}=b nliman=anlimbn=b易得 a n ≤ a ≤ b ≤ b n a_{n}\le a\le b\le b_{n} anabbn
0 ≤ b − a ≤ b n − a n = ∣ I n ∣ 0\le b-a\le b_{n}-a_{n}=|I_{n}| 0babnan=In,而 ∣ I n ∣ → 0 ( n → ∞ ) |I_{n}|\to 0 (n\to \infty) In0(n),所以 b = a b=a b=a,即 a n ≤ a ≤ b n a_{n}\le a\le b_{n} anabn 对于任意的N都成立, a ∈ I n a\in I_{n} aIn 对于任意的n都成立,显然 a a a是唯一的,并且 a ∈ ∩ n = 1 ∞ I n a\in \cap_{n=1}^{\infty}I_{n} an=1In


有限覆盖定理

[ a , b ] [a,b] [a,b]是一个有限闭区间,并且它有一个开覆盖{ I λ I_{\lambda} Iλ},那么从这个开覆盖中一定能找到有限个开区间,使得这个开区间所成的族任然是 [ a , b ] [a,b] [a,b]的开覆盖。

开覆盖定义:
如果A是实数集,{ I λ I_{\lambda} Iλ}是一个开区间族,其中 λ ∈ ∧ \lambda \in \land λ。这里的 ∧ \land 为指标集,如果 A ⊂ ∪ λ ∈ ∧ I λ A\subset \cup_{\lambda \in \land}I_{_{\lambda}} AλIλ称开区间族{ I λ I_{\lambda} Iλ}为A的一个开覆盖。
或者可以等价的说: ∀ a ∈ A \forall a\in A aA,总有{ I λ I_{\lambda} Iλ}中的一个成员,记为 I λ ( a ) I_{\lambda(a)} Iλ(a),使得 a ∈ I λ ( a ) a\in I_{\lambda(a)} aIλ(a)

定理证明:
反证法,假设定理不成立,令 a 1 = a , b 1 = b a_{1}=a,b_{1}=b a1=a,b1=b则在{ I λ I_{\lambda} Iλ}中找不到有限个开区间可以覆盖 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1],我们同样采用“二分法”,以 ( a 1 + b 1 ) / 2 (a_{1}+b_{1})/2 (a1+b1)/2为中间点将区间一分为二,则左右两边至少有一边找不到有限个开区间可以覆盖,取其为 [ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2],重复二分法的步骤,我们可以得到一列区间{ [ a n , b n ] [a_{n},b_{n}] [an,bn]}, n = 1 , 2 , . . . n=1,2,... n=1,2,...,它们满足下列性质:

  • (a) [ a n + 1 , b n + 1 ] ⊂ [ a n , b n ] [a_{n+1},b_{n+1}]\subset[a_{n},b_{n}] [an+1,bn+1][an,bn]
  • (b) b n − a n = ( b − a ) / 2 n − 1 → 0 ( n → ∞ ) b_{n}-a_{n}=(b-a)/2^{n-1}\to 0(n\to \infty) bnan=(ba)/2n10(n)
  • (c)每个 [ a n , b n ] [a_{n},b_{n}] [an,bn]都不能被{ I λ I_{\lambda} Iλ}中有限个开区间覆盖

由(a)、(b)的性质可以知道该列区间满足闭区间套定理,则有唯一的 η ∈ [ a n , b n ] \eta \in [a_{n},b_{n}] η[an,bn],并且 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = η \lim_{n\to \infty}a_{n}=\lim_{n\to \infty}b_{n}=\eta nliman=nlimbn=η因为 η ∈ [ a , b ] \eta \in [a,b] η[a,b],{ I λ I_{\lambda} Iλ}是开覆盖,所以我们可以在{ I λ I_{\lambda} Iλ}中找到一个开区间 ( α , β ) (\alpha,\beta) (α,β)覆盖 η \eta η,记 ε = m i n ( η − α , β − η ) \varepsilon=min(\eta-\alpha,\beta-\eta) ε=min(ηα,βη) ∃ N 1 , N 2 \exist N_{1},N_{2} N1,N2 ∀ n > N 1 \forall n>N_{1} n>N1 ∣ a n − η ∣ < ε |a_{n}-\eta|<\varepsilon anη<ε ∀ n > N 2 \forall n>N_{2} n>N2 ∣ b n − η ∣ < ε |b_{n}-\eta|<\varepsilon bnη<ε,取 N = m a x ( N 1 , N 2 ) N=max(N_{1},N_{2}) N=max(N1,N2),则有不等式 α ≤ η − ε < a n < b n < η + ε ≤ β \alpha \le \eta-\varepsilon<a_{n}<b_{n}<\eta+\varepsilon \le \beta αηε<an<bn<η+εβ,即 [ a n , b n ] ⊂ [ α , β ] [a_{n},b_{n}]\sub[\alpha,\beta] [an,bn][α,β],{ I λ I_{\lambda} Iλ}中一个区间就覆盖了 [ a n , b n ] [a_{n},b_{n}] [an,bn],这与(c)矛盾。

注:若将有限闭区间换成开区间或无穷区间,结论就不成立,例如{(1/n,1)}是开区间(0,1)的一个开覆盖,但找不到有限个区间覆盖(0,1);再例如,{(1,n)}是(1,inf)的一个开覆盖,也找不到有限个区间覆盖它。


列紧性定理(致密性定理)

任何有界数列必有收敛子列。

引理:从任一数列中必可选出一个单调子列

引理证明:
定义,如果数列中的一项大于后面的所有项,称这一项为“龙头”。下面分两种情况:

  • (a)数列有无穷个龙头,则所有的龙头组成一个单调递减的数列
  • (b)数列有有限个龙头,取最后一个龙头的下一项为 a i 1 a_{i_{1}} ai1,由龙头定义,后面一定可以找到一项大于 a i 1 a_{i_{1}} ai1,记为 a i 2 a_{i_{2}} ai2,该项也不是龙头,所以也可以找到一项大于 a i 2 a_{i_{2}} ai2,记为 a i 3 a_{i_{3}} ai3,依次类推,我们可以得到一个点掉递增的数列 { a i n } \{a_{i_{n}}\} {ain}

定理证明:
根据引理,我们可以找到一个单调的子列,这个子列肯定也是有界的,再根据单调有界定理,该子列收敛。


柯西收敛准则

数列收敛的充要条件为它是否是柯西列(基本列),即 ∀ ε > 0 , ∃ N ∈ N ∗ \forall \varepsilon >0,\exists N\in N^* ε>0,NN,使得 m , n ∈ N ∗ m,n\in N^* m,nN 并且 m , n > N m,n>N m,n>N,有 ∣ a m − a n ∣ < ε |a_{m}-a_{n}|<\varepsilon aman<ε

定理证明:
必要性 a n a_{n} an收敛,令其极限是a,则 ∀ ε > 0 , ∃ N \forall \varepsilon >0,\exists N ε>0,N,当 n > N n>N n>N时,有 ∣ a n − a ∣ < ε / 2 |a_{n}-a|<\varepsilon / 2 ana<ε/2 m , n > N m,n>N m,n>N,可得 ∣ a m − a n ∣ = ∣ a m − a + a − a n ∣ ≤ ∣ a m − a ∣ + ∣ a n − a ∣ < ε |a_{m}-a_{n}|=|a_{m}-a+a-a_{n}|\le |a_{m}-a|+|a_{n}-a|<\varepsilon aman=ama+aanama+ana<ε这说明{ a n a_{n} an}是一个柯西列。
充分性: 先证明柯西列是有界的
ε 0 = 1 \varepsilon_{0}=1 ε0=1时,我们可以找到一个 N N N,当 n > N n>N n>N时,有 ∣ a n − a N + 1 ∣ < ε 0 = 1 |a_{n}-a_{N+1}|<\varepsilon_{0}=1 anaN+1<ε0=1所以 ∣ a n ∣ < ∣ a N + 1 ∣ + 1 |a_{n}|<|a_{N+1}|+1 an<aN+1+1
M = { ∣ a 1 ∣ , ∣ a 2 ∣ , . . . , ∣ a N ∣ , ∣ a N + 1 ∣ + 1 } M=\{ |a_{1}|,|a_{2}|,...,|a_{N}|,|a_{N+1}|+1\} M={a1,a2,...,aN,aN+1+1},则对于任意的n, ∣ a n ∣ ≤ M |a_{n}|\le M anM,即该数列有界。
再证明它是收敛的
列紧性定理,我们可以找到一个收敛的子列 { a i n } \{a_{i_{n}}\} {ain},令极限为a,则 ∀ ε > 0 , ∃ N 1 \forall \varepsilon >0,\exists N_{1} ε>0,N1,当 n > N 1 n>N_{1} n>N1时,有 ∣ a i n − a ∣ < ε / 2 |a_{i_{n}}-a|<\varepsilon / 2 aina<ε/2同时根据柯西列的性质,当 m , n > N 2 m,n>N_{2} m,n>N2时,有 ∣ a m − a n ∣ < ε / 2 |a_{m}-a_{n}|<\varepsilon/2 aman<ε/2我们令 N = m a x { N 1 , N 2 } N=max\{N_{1},N_{2}\} N=max{N1,N2},则同时满足上面两个不等式,我们可以得到 ∣ a n − a ∣ ≤ ∣ a n − a i n ∣ + ∣ a i n − a ∣ < ε |a_{n}-a|\le|a_{n}-a_{i_{n}}|+|a_{i_{n}}-a|<\varepsilon anaanain+aina<ε { a n } \{a_{n}\} {an}是收敛数列。


确界原理

设S为非空数集,若S有上界,则必有上确界;若S有下界,则必有下确界。

定理证明:
先证明前半部分
设非空集合E有一个上界r,任取一点 x ∈ E x\in E xE,显然E中的最小上界应该在 [ x , r ] [x,r] [x,r]中寻找,我们记 a 1 = x , b 1 = r a_{1}=x,b_{1}=r a1=x,b1=r,用中点 ( a 1 + b 1 ) / 2 (a_{1}+b_{1})/2 (a1+b1)/2将区间一分为二,先看右半区间中是否有E中的点,如果有将这个区间记为 [ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2],否则将左边的区间记为 [ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2],重复二分的步骤,我们可以得到一列闭区间套 I n = [ a n , b n ] I_{n}=[a_{n},b_{n}] In=[an,bn] I 1 ⊃ I 2 ⊃ . . . ⊃ I n . . . I_{1}\supset I_{2}\supset ...\supset I_{n}... I1I2...In...,并且 ∣ I n ∣ = ( r − x ) / 2 n − 1 |I_{n}|=(r-x)/2^{n-1} In=(rx)/2n1 I n I_{n} In有如下两个性质:

  • (a)在 I n I_{n} In的右端没有E中的点
  • (b) I n I_{n} In中总包含E中的点

据闭区间套定理,存在唯一的实数 β \beta β,使得 β ∈ ⋂ I n \beta \in \bigcap I_{n} βIn,同时 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = β \lim_{n\to \infty}a_{n}=\lim_{n\to \infty}b_{n}=\beta nliman=nlimbn=β下面我们来证明 β = sup ⁡ E \beta=\sup E β=supE
∀ c ∈ E \forall c\in E cE,由(a)可知, c ≤ b n c\le b_{n} cbn,令 n → ∞ n\to \infty n,则得到 c ≤ β c\le \beta cβ,说明 β \beta β是一个上界
由于 a n a_{n} an的极限是 β \beta β,故 ∀ ε > 0 , ∃ N ∈ N ∗ , s . t . β − ε < a N \forall \varepsilon>0,\exist N\in N^*,s.t.\beta-\varepsilon<a_{N} ε>0,NN,s.t.βε<aN,在区间 I n I_{n} In中,由(b)可知,有E中一点d,且 d ≥ a N > β − ε d\ge a_{N}>\beta-\varepsilon daN>βε,这说明 β \beta β是E中的最小上界。
后半段可由前半段来证明
设E中有下界m,定义 F = { − x : x ∈ E } F=\{-x:x\in E\} F={x:xE},则因 x ≥ m x\ge m xm,所以 − x ≤ − m -x\le -m xm,即-m是F的一个上界,由前半段可知,F有上确界,记为 β = sup ⁡ F \beta=\sup F β=supF,只需证明 − β = inf ⁡ E -\beta=\inf E β=infE即可。


小结

在实数系中,这六个定理是相互等价的,可以环状证明,此处就不详细说明了。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值