数学分析总结

数分

数列极限、性质、存在条件

数列趋向于一个实数。
唯一性、有界性(收敛数列有界)、保号性、保不等式性、迫敛性、四则运算。
单调有界数列收敛、有界数列有收敛子列、柯西收敛准则。

函数极限、性质、存在条件

当x趋向于某个值时,函数值也趋向于某个定数。
唯一性、局部有界性、局部保号性、局部保不等式性、迫敛性、四则运算。

归结原则:函数在x0极限存在的充要条件为,任意以x0为极限的数列{xn},f(xn)极限存在且相等。(将函数与数列联系起来)
证明:

  1. 必要性:对于任意小的数 ε \varepsilon ε,存在 δ \delta δ,对于去心 δ \delta δ邻域,满足f(x)与A相差的绝对值小于 ε \varepsilon ε,可以用数列趋近于这个邻域,使得数列也满足这个不等式,这就证明了f(xn)极限存在且相等。
  2. 充分性:用反证法,如果函数极限不存在,那我们可以构造一个数列,满足数列趋向于x0,但f(xn)不趋向于A。

单调有界函数极限存在、柯西准则。

函数的连续性、性质

函数在某一点的极限值为函数这一点的函数值,或者说函数在这一点极限存在,且极限值等于这一点的函数值。
可根据极限的性质得到连续的性质

闭区间上连续函数的基本性质

有界定理:函数在闭区间上连续,则函数在闭区间上有界
证明:反证法,假设函数无上界,那么可以找到一列闭区间上的数列,使得,数列的函数值趋向于正无穷,由致密性定理,有界数列有收敛子列,那么这个子列的收敛值也是闭区间里的数,记为x0,再由连续性可知,x0点的函数值为无穷,矛盾。

最大最小值定理:f在闭区间上有最大最小值。
证明:由引理和确界定理,函数有上确界,并且可以证明闭区间的某一点的函数值等于上确界,同理可证下确界。

介值性定理:f在闭区间[a, b]上连续,对于f[a]和f[b]之间的数u,可以在闭区间中找到一点,使得该点的函数值等于u。
推论(根的存在性定理):f在闭区间[a, b]上连续,f[a]和f[b]异号,则可以在闭区间中找到一点,使得该点的函数值等于0。
证明:二者等价,证推论,用二分法构造闭区间套,其中区间套的左右端点的函数值异号,再由连续性可知,闭区间套的唯一点的函数值为0。

一致连续,以及与连续的差异

给定一个任意小的数,对于区间任意两个数x1,x2,只要二者足够接近,则它们的函数值的差的绝对值小于给定的任意小的数。
连续是先选取一个点,定义中的 δ \delta δ是与x的选取有关,不同的x可能会有不同的 δ \delta δ,而一致连续是对于整个区间, δ \delta δ的选取只与你给定的任意小的数有关,即使用区间中所有的点。

一致连续性定理:f在[a, b]上连续,则一致连续
证明:反证法,假设f在[a, b]上不一致连续,则我们可以构造两个函数列,尽管它们的极限充分接近,但存在一个数t0,使得它们的函数值的极限大于等于t0。再由有界数列有收敛子列,并且易得两个函数列的子列极限相等,记极限值为x0,再由函数的连续性可知,0大于等于t0,矛盾。

可微与可导

可导:某一点x0,加上增量t的函数值减去x0的函数值,与增量t的比,当t趋向于0的时候的极限值存在,该极限值为x0的导数值。
可微:函数的增量可以表示为,一常数A乘以x0的增量,加上x0的增量的无穷小量。
可导就可微,可微就可导,并且因变量的微分与自变量的微分的比值为导数

微分中值定理及其联系

罗尔中值定理:f在闭区间[a, b]上连续,在开区间上可导,并且f(a)=f(b),则(a, b)上至少存在一点,使得该点的导数值为0.
证明:最大最小值定理,f在[a, b]上有最大最小值,分别记为M,m,下面分两种情况:

  1. M=m,f为常函数,导数值恒为0
  2. M不等于m,端点只能取到最大最小值中的一个,剩下那个根据费马定理可知,那点的导函数为0.

拉格朗日中值定理:f在闭区间[a, b]上连续,开区间可导,则在开区间上存在一点,使得,该点的导数值为f(b)减去f(a)除以b减a。
证明:构造f(x)-f(a)-(f(b)-f(a))/(b-a),再有罗尔中值定理可直接得出结论。

柯西中值定理:f和g在闭区间[a, b]上连续,开区间上可导,则。。。

联系:后面是前面的推广

洛必达法则

0比0型,或无穷比无穷型,f比g的极限值,为它们的导数的极限值。
证明:由柯西中值定理容易证得。

定积分(黎曼积分)

f是定义在[a, b]上的函数,J是一个确定的实数,对区间上的分割,只要分割的区间的最大长度趋向于0,那么每个小区间上的任意选取的点集,它们的函数值乘以区间长的和会趋向于J,J就是f在[a, b]上的定积分。

牛顿—莱布尼兹公式

f存在原函数F,则f在[a, b]上的定积分为F(b)-F(a)
证明:由定积分的定义, ε − δ \varepsilon-\delta εδ语言,再用拉格朗日中值定理,将F(b)-F(a)分割成一列f的和,再由一致连续性,说明只要我们分割的足够小,二者就足够接近。

可积条件

必要条件:f在闭区间上有界
充要条件:上和和下和的极限值相等
充分条件:

  1. f为[a, b]上的连续函数,则f在[a, b]上可积
  2. f是[a, b]上只有有限个间断点的有界函数
  3. f是[a, b]上的单调函数

定积分的性质

四则运算、积分区间的可加性、保号性、绝对值不等式

积分中值定理

积分第一中值定理:f在[a, b]上连续,则至少存在一点t属于[a, b],使得 f在[a, b]上的定积分等于f(t)乘以b-a。
证明:f在[a, b]上连续,则存在最大值和最小值,分别记为M和m,再由积分的不等式性可得到,m小于等于f在[a, b]上的定积分除以b减a,小于等于M,再由介值定理,存在一点t,使得f(t)等于f在[a, b]上的定积分除以b减a。

推广的积分第一中值定理

积分第二中值定理

原函数存在定理

若f在[a, b]上连续,则变上限积分在[a, b]上处处可导,并且为f的一个原函数

曲线弧长

曲线C是一条没有自交点的非闭平面曲线,由参数方程给出x(t)和y(t),t属于[a, b],若x,y连续可微,则C是可求长的,且弧长为x和y的导数的平方和开根号在[a, b]上的定积分
证明:微元法

反常积分

无穷限反常积分和瑕积分

无穷积分的性质和收敛判别

性质:线性收敛、收敛而不绝对收敛为条件收敛
收敛的充要条件:因为无穷积分即积分函数的趋向于无穷时极限是否存在,可有函数极限的柯西收敛准则来直接推导出。
非负函数:比较原则
一般函数:迪利克雷判别法、阿贝尔判别法

瑕积分的性质与判别

同上

以下为第二册的内容

数项级数

收敛的充要条件可由数列的柯西准则推出
正向级数收敛的判别方法:

  1. 充要条件:部分和有界,由单调有界即可证明
  2. 充分条件:比较原则、比式判别法、根式判别法、积分判别法

一般项级数:

  1. 交错级数:即级数的各项符号正负相间,若满足,数列单调递减,且趋向于0,则级数收敛
  2. 级数 ∑ a n b n \sum a_{n}b_{n} anbn收敛:阿贝尔判别法、迪利克雷判别法

函数列与函数项级数

函数列收敛: x0点收敛,如果x0的函数列的值组成的数列收敛。
函数列一致收敛: 如果函数列 { f n } \{f_{n}\} {fn}在D上一致收敛,那么对于给定的 ε \varepsilon ε,不管D上的哪一点x,总存在公共的N,N的取值只与 ε \varepsilon ε的选取有关,与x的选取无关,只要n大于N,都有fn与f的差值的绝对值小于 ε \varepsilon ε
函数列一致收敛的柯西准则: 函数列 { f n } \{f_{n}\} {fn},对于任给的 ε \varepsilon ε,总存在正整数N,m,n>N时,对于一切的x属于D,都有fn(x)-fm(x)的绝对值小于 ε \varepsilon ε
证明:

  1. 必要性:绝对值不等式
  2. 充分性:由数列柯西收敛准则,{fn}在任意一点都收敛,记其极限函数为f(x),对于 ∣ f n ( x ) − f m ( x ) ∣ |f_{n}(x)-f_{m}(x)| fn(x)fm(x),固定m,让n趋向于无穷,于是当n>N时,对于一切的x都有fn-f的绝对值小于 ε \varepsilon ε

定理: 函数列 { f n } \{f_{n}\} {fn}一致收敛于f的充要条件是,上极限 ∣ f n ( x ) − f ( x ) ∣ |f_{n}(x)-f(x)| fn(x)f(x)趋向于0

{ S n ( x ) } \{S_{n}(x)\} {Sn(x)}是函数项级数 ∑ u n ( x ) \sum u_{n}(x) un(x)的部分和函数列(将函数项级数转化为函数列,以下定理都可由上面获得)
函数项级数收敛: x0点收敛,则部分和函数列的极限存在。
函数项级数一致收敛: 部分和函数列一致收敛。
一致收敛的柯西准则: 部分和函数列满足柯西条件。

函数项级数的一致收敛判别法
维尔斯特拉斯判别法: ∑ M n \sum M_{n} Mn为收敛的正项级数,若对于一切的x,有 u n u_{n} un函数值的绝对值小于等于 M n M_{n} Mn,则函数项级数一致收敛。
阿贝尔判别法、迪利克雷判别法

一致收敛的函数列与函数项级数的性质:
函数列

定理:在一致收敛的条件下,函数列中两个独立变量x与n,在分别求极限时极限顺序可以交换。

连续性:若函数列 { f n } \{f_{n}\} {fn}在区间I上一致收敛,且每一项都连续,则其极限函数f在I上也连续。
证明:x0为I上任意一点,由于fn连续,则fn在x0点的极限值为fn(x0),由定理可知,f(x)在x0点的极限也存在,并且为f(x0),因此f(x)在x0上连续。

可积性:函数列在[a, b]上一致收敛,且每一项都连续,那么极限运算与积分运算的顺序可以交换。
证明:由上面的定理,我们知道f在[a, b]上也连续,那么fn与f都可积。用f去替换 lim ⁡ n → ∞ f n ( x ) \lim_{n \to \infty}f_{n}(x) limnfn(x),再利用积分的绝对值的不等式,很容易得到交换顺序的二者相等。

可微性:

函数项级数

连续性:若函数项级数在区间[a, b]上一致收敛,且每一项都连续,则其和函数在区间上也连续。

逐项求积:函数项级数一致收敛,且每一项都连续

逐项求导:函数项级数在[a, b]上每一项都有连续的导函数,且导函数项级数在[a, b]上一致收敛,函数项级数一致收敛

上面两个定理说明,在一致收敛的条件下,逐项求积或逐项求导后求和等于求和后再逐项求积或求导。

幂级数
∑ n = 0 ∞ a n ( x − x 0 ) n \sum_{n=0}^{\infty}a_{n}(x-x_{0})^n n=0an(xx0)n称为幂级数,下面着重讨论x0=0的情形。

阿贝尔定理:幂级数为 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty}a_{n}x^n n=0anxn,若幂级数 x 0 x_{0} x0处收敛,则满足不等式 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_{0}| x<x0的任何x,幂级数收敛且绝对收敛;若在 x 0 x_{0} x0处发散,则对满足不等式 ∣ x ∣ > ∣ x 0 ∣ |x|>|x_{0}| x>x0的任何x,幂级数发散。
由定理可知收敛域是以原点为中心的区间,(-R, R)为幂级数的收敛区间,R为收敛半径,收敛半径可根据根式判别法求出。

函数的幂级数展开(泰勒展开)

定理:设f在点x0具有任意阶导数,那么f在区间(x0-r, x0+r)上等于它的泰勒级数的和函数的充分条件是:对一切满足不等式|x-x0|<r的x,由泰勒公式的余项极限为0。
定理说明余项对函数能否展开为幂级数是记为重要的。
首先,函数项级数要收敛,其次余项趋向于0

傅里叶级数
若f是以 2 π 2\pi 2π为周期且在 [ − π , π ] [-\pi,\pi] [π,π]上可积的函数,则由
a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x , n = 0 , 1 , 2... b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x , n = 0 , 1 , 2... a_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nxdx,n=0,1,2... \\ b_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nxdx,n=0,1,2... an=π1ππf(x)cosnxdx,n=0,1,2...bn=π1ππf(x)sinnxdx,n=0,1,2...计算出来的 a n a_{n} an b n b_{n} bn称为f的傅里叶系数,傅里叶级数,记作
f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)\sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}(a_{n}\cos nx+b_{n}\sin nx) f(x)2a0+n=1(ancosnx+bnsinnx)这里的“ ∼ \sim ”表示右边是左边函数的傅里叶级数。由定理可知,如果右边的三角级数在整个数轴上一致收敛于f,则“ ∼ \sim ”可以换成等号。
接下来就讨论傅里叶级数是否收敛,收敛的话是否收敛于函数本身。

傅里叶级数收敛定理
推论:若f式以 2 π 2\pi 2π为周期的连续函数,且在 [ − π , π ] [-\pi,\pi] [π,π]上按段光滑,则f的傅里叶级数在 ( − ∞ , ∞ ) (-\infty,\infty) (,)上收敛于f
光滑的定义:在定义域内无穷阶数连续可导。

以2l为周期的函数的展开式
设f是以2l为周期的函数,通过变量代换 x = l t π x=\frac{lt}{\pi} x=πlt替换x,将f变换成 2 π 2\pi 2π为周期的函数,在利用上面的傅里叶级数展开即可。

R 2 R^2 R2上的实数完备性定理

定义(收敛):设 { P n } ⊂ R 2 \{P_{n}\}\subset R^2 {Pn}R2 P 0 P_{0} P0为一固定点,那么对于任意给定的正数,当Pn中的n趋向于无穷时,Pn属于任意小邻域。

柯西准则、闭域套定理、聚点定理(有界无限点集至少有一聚点)、有限覆盖定理

二元函数的极限

定义与一元函数基本相同,只是极限点应该为一聚点,因为不是聚点的话,不可能在那一点有极限。记作 lim ⁡ P → P 0 f ( P ) = A \lim_{P\to P_{0}}f(P)=A PP0limf(P)=A当P用坐标表示时,也可记作 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim_{(x,y)\to(x_{0},y_{0})}f(x,y)=A (x,y)(x0,y0)limf(x,y)=A

定理(类似于归结原则):f在D上极限P0存在的充要条件是:对于D的任意子集E,只要P0是E的聚点,那么就有f在E上极限P0存在且极限相等。

上面自变量x,y以任何方式趋向于x0,y0也称为重极限,下面介绍累次极限,即x与y按照一定的先后顺序相继趋于x0与y0,记作
lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) = L \lim_{x\to x_{0}}\lim_{y\to y_{0}}f(x,y)=L xx0limyy0limf(x,y)=L lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) = L \lim_{y\to y_{0}}\lim_{x\to x_{0}}f(x,y)=L yy0limxx0limf(x,y)=L

重极限和累次极限之间的关系:若存在重极限与累次极限,则它们必相等。

二元函数的连续性
lim ⁡ P → P 0 f ( P ) = f ( P 0 ) \lim_{P\to P_{0}}f(P)=f(P_{0}) PP0limf(P)=f(P0)

性质:局部有界性、局部保号性、四则运算、复合函数的连续性。


中间略过


方向导数

定义:f(x, y, z)在U(P0)有定义,l为从点P0出发的射线,P(x, y, z)为l上且含于定义的任一点,以 ρ \rho ρ表示P和P0之间的距离,若极限 lim ⁡ ρ → 0 + f ( P ) − f ( P 0 ) ρ \lim_{\rho \to 0^+}\frac{f(P)-f(P_{0})}{\rho} ρ0+limρf(P)f(P0)存在,则称刺激先为函数f在点P0沿方向l的方向导数,记作 ∂ f ∂ l ∣ P 0 , f l ( P 0 ) , f l ( x 0 , y 0 , z 0 ) \frac{\partial f}{\partial l}\mid_{P_{0}},f_{l}(P_{0}),f_{l}(x_{0},y_{0},z_{0}) lfP0,fl(P0),fl(x0,y0,z0)

定理:若函数f在点P0可微,则f在点P0沿任意方向l的方向导数都存在,且 f l ( P 0 ) = f x ( P 0 cos ⁡ α + f y ( P 0 ) cos ⁡ β + f z ( P 0 ) cos ⁡ γ ) f_{l}(P_{0})=f_{x}(P_{0}\cos \alpha+f_{y}(P_{0})\cos \beta+f_{z}(P_{0})\cos \gamma) fl(P0)=fx(P0cosα+fy(P0)cosβ+fz(P0)cosγ)其中 cos ⁡ α cos ⁡ β cos ⁡ γ \cos \alpha \cos \beta \cos \gamma cosαcosβcosγ为方向 l上的方向余弦。
证明:直接由全微分定义可以证明

梯度

定义:若f在点 P 0 ( x 0 , y 0 , z 0 ) P_{0}(x_{0},y_{0},z_{0}) P0(x0,y0,z0)存在对所有自变量的偏导数,则称向量 ( f x ( P 0 ) , f y ( P 0 ) , f z ( P 0 ) ) (f_{x}(P_{0}),f_{y}(P_{0}),f_{z}(P_{0})) (fx(P0),fy(P0),fz(P0))为函数的f在点P0的梯度

隐函数定理

隐函数定义:设 E 1 , E 2 ⊂ R , F : E 1 × E 2 → R E_{1},E_{2}\subset R,F:E_{1}\times E_{2}\to R E1,E2R,F:E1×E2R为二元函数,对二元方程F(x, y)=0,若存在 I ⊂ E 1 I\subset E_{1} IE1,使得任意的x属于I,有唯一的属于 E 2 E_{2} E2的y,满足方程F(x, y)=0,则称有方程确定了定义在I上的隐函数。

隐函数存在唯一性定理:若函数F(x, y)满足下列条件:

  1. F在以P0为内点的某一区域D上连续
  2. F(P0)=0(通常为初始条件)
  3. F在D内存在连续的偏导数 F y F_{y} Fy
  4. F y F_{y} Fy不等于0

  1. 存在某邻域U(P0)在方程F(x, y)=0唯一的决定了一个定义在某区间 ( x 0 − α , x 0 + α ) (x_{0}-\alpha,x_{0}+\alpha) (x0α,x0+α)上的隐函数y=f(x),使得当x属于开区间时,F(x, y)=0有唯一解 f ( x 0 ) = y 0 f(x_{0})=y_{0} f(x0)=y0
  2. f(x)在开区间上连续

隐函数可微性定理:F满足上面的四个条件,同时F存在连续的偏导数 F x F_{x} Fx,则由方程确定的隐函数y=f(x)在其定义域上有连续偏导数,且f的导数为 − F x F y -\frac{F_{x}}{F_{y}} FyFx
这个定理中的x可以推广到任意维

欧拉积分(含参量积分)

伽马函数:(阶乘的连续定义) Γ ( x ) = ∫ 0 + ∞ x s − 1 e − x d x , s > 0 \Gamma(x)=\int_{0}^{+\infty}x^{s-1}e^{-x}dx,s>0 Γ(x)=0+xs1exdx,s>0贝塔函数: B ( p , q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1 d x , p > 0 , q > 0 B(p,q)=\int_{0}^1x^{p-1}(1-x)^{q-1}dx,p>0,q>0 B(p,q)=01xp1(1x)q1dx,p>0,q>0

第一型曲线积分

定义:把可求曲线长度分割成若干个小段Li,弧长分别记为si,在Li上任取一点(ai, bi),若分割细度趋近于0时,级数f(ai, bi)乘以si求和极限存在,极限值称为f在L上的第一型曲线积分。
物理上的意义就是求曲线的质量

第二型曲线积分

定义:把L分割成n个小段,当分割细度趋近于0时,小段的横坐标的差值乘以P在该弧段任意一点的函数值的级数,加上小段的纵坐标的差值乘以Q在该弧段任意一点的函数值的级数,这个极限存在,称此极限为第二型曲线积分。
物理意义就是质点受力F沿L做的功,F在x轴和y轴的投影分别为P,Q

二重积分

定义:f(x, y)是定义在可求面积的有界闭区域D上的函数,J是一个确定的数,若对任意的 ε \varepsilon ε,总存在某个正数 δ \delta δ,使得D的任何分割T,当分割细度小于 δ \delta δ时,在每个分割的小区域上任取一点,这些点的函数值分别乘以对应的小区域的面积的和,减去J的绝对值小于 ε \varepsilon ε,则称J为函数f在D上的二重积分。

直角坐标系下的二重积分的计算

累次积分的定义:两次单变量积分,当f在D上连续时,累次积分次序可以交换。
可由f在矩形区域D=[a, b] x [c, d]上的累次积分,推广到x型区域和y型区域,上的累次积分。

格林公式·曲线积分与路线的无关性

格林公式:若函数P、Q在闭区域D上连续,且有连续的一阶偏导数,则有 ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d δ = ∮ L P d x + Q d y \iint_{D}(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})d\delta=\oint_{L}Pdx+Qdy D(xQyP)dδ=LPdx+Qdy这里的L为区域D的边界曲线,取正方向(人沿边界行走时,区域D总在它的左边)
证明:分三种区域讨论

  1. 既是x型,又是y型区域
  2. 可将区域分割成既是x型,又是y型区域的子区域
  3. 区域中间有“洞”

定理:设D是单连通区域(没有“洞”的区域),若函数P(x, y),Q(x, y)在D内连续且具有一阶连续偏导数,则下面四个条件等价:

  1. 沿D内任一按段光滑封闭曲线L,有 ∮ L P d x + Q d y = 0 \oint_{L}Pdx+Qdy=0 LPdx+Qdy=0
  2. 对D中任一按段光滑曲线L,曲线积分 ∫ L P d x + Q d y \int_{L}Pdx+Qdy LPdx+Qdy与路线无关,只与L的起始点有关;
  3. 在D内有全微分 d u = P d x + Q d y du=Pdx+Qdy du=Pdx+Qdy
  4. ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ

建立了沿封闭曲线的第二型曲线积分与二重积分的关系

曲面积分

第一型曲面积分:质量分布在曲面块S上,曲面块的质量

第二型曲面积分:计算流量问题,求单位实践内流经过曲面S的总流量,流速为v

高斯公式

空间区域V由封闭曲面S围成,若函数P,Q,R在V上连续,且有一阶连续偏导数,则
∭ V ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z = ∯ S P d y d x + Q d z d x + R d x d y \iiint_{V}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dxdydz=\oiint_{S}Pdydx+Qdzdx+Rdxdy V(xP+yQ+zR)dxdydz= SPdydx+Qdzdx+Rdxdy其中S取外侧
建立了沿空间闭曲面的曲面积分和三重积分之间的关系

斯托克斯公式

光滑曲面S的边界L是按段光滑的连续曲线,P,Q,R连续且有一阶偏导数,则
∬ S ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∮ L P d x + Q d y + R d x \iint_{S}\begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}=\oint_{L}Pdx+Qdy+Rdx SdydzxPdzdxyQdxdyzR=LPdx+Qdy+Rdx
空间双侧曲面S的积分与沿S的边界曲线L的积分之间的关系

若空间 Ω \Omega Ω为单连通区域,函数P、Q、R在 Ω \Omega Ω上连续,且有一阶连续偏导数,则下面四个条件等价

  1. 空间任意光滑封闭曲线L有
    ∮ L P d x + Q d y + R d z = 0 \oint_{L}Pdx+Qdy+Rdz=0 LPdx+Qdy+Rdz=0
  2. 空间内任一段光滑曲线L,曲线积分与路径无关
  3. P d x + Q d y + R d z Pdx+Qdy+Rdz Pdx+Qdy+Rdz Ω \Omega Ω内某一函数的全微分
  4. ∂ P ∂ y = ∂ Q ∂ x , ∂ Q ∂ z = ∂ R ∂ y , ∂ R ∂ x = ∂ P ∂ z \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y},\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z} yP=xQ,zQ=yR,xR=zP在空间内处处成立

未完待续。。。

  • 21
    点赞
  • 185
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值