高等代数总结

高代

排列

逆序数(前面的数大于后面的数称为逆序,排列中逆序的总数)为偶数称为偶排列,奇数称为奇排列。

行列式,及其相关定理

n级行列式等于所有取自不同行不同列的n个元素的乘积的代数和,符号由1到n行的列排列,如果是偶排列取正,奇排列取负。

克拉默法则:方程的系数矩阵的行列式不为零,那么方程有解,并且解是唯一的,解可以通过系数表示出来。

拉普拉斯定理:在行列式D中任取k行,由这k行元素所组成的一切k级子式与它们的代数余子式的乘积的和等于行列式D。

线性相关性

等价:两组向量可以互相线性表出
自反性、对称性、传递性

极大线性无关组:一个的向量组的部分向量组线性无关,从这个向量组中任意添加一个向量的话,所得的部分向量组线性相关,这个部分组称为极大线性无关组。

定理:设 α 1 , . . . , α r \alpha_{1},...,\alpha_{r} α1,...,αr β 1 , . . . , β s \beta_{1},...,\beta_{s} β1,...,βs是两个向量组,如果

  1. 向量组 α 1 , . . . , α r \alpha_{1},...,\alpha_{r} α1,...,αr可以经 β 1 , . . . , β s \beta_{1},...,\beta_{s} β1,...,βs线性表出
  2. r>s

那么向量组 α 1 , . . . , α r \alpha_{1},...,\alpha_{r} α1,...,αr线性相关。
证明:目标是找到不全为零的 x 1 . . . x r x_{1}...x_{r} x1...xr使得 x 1 α 1 + . . . + x r α r = 0 x_{1}\alpha_{1}+...+x_{r}\alpha_{r}=0 x1α1+...+xrαr=0成立。
由1,我们将式子里的 α \alpha α替换成 β \beta β,我们可以找到不全为零的xi,使得 β \beta β的系数全为零,因为由2可知未知量的个数大于方程的个数,有非零解。

向量组等价,对应的方程组同解,因为它们对应的方程组可以互相线性表出

矩阵的秩

定义:行(列)向量组的极大线性无关组的数量

定理:行秩和列秩相等
证明:先证行秩小于等于列秩
找到矩阵行向量组的一组极大线性无关组 α 1 , . . . , α r \alpha_{1},...,\alpha_{r} α1,...,αr,那么方程 x 1 α 1 + . . . + x r α r = 0 x_{1}\alpha_{1}+...+x_{r}\alpha_{r}=0 x1α1+...+xrαr=0只有零解(由线性无关的定义得到),说明这个方程组的系数矩阵的行秩大于等于r(其实这边可以得到行秩等于r,由n+1个n维向量线性相关),所以可以在行向量中找到r个线性无关的行向量,在这些向量上添加几个分量还是线性无关的,我们添加使其称为r个列向量即可,说明列秩至少是r,即列秩大于等于行秩。
同理可证行秩大于等于列秩。

定理:n*n的行列式|A|为0的充分必要条件是A的秩小于n。
证明:

  1. 先证充分性,如果n=1,那么A的秩小于1,说明那个向量为零向量,易得行列式为0,如果n>1,那么A中有一行可以被其它行线性表出,将那一行依次减去各行的倍数,这一行全变成零,从而行列式为0。
  2. 再证必要性。我们对n作数学归纳法。
    当n=1时,由行列式为0,可知唯一的元素为0,因而秩为0
    假设结论对n-1级矩阵已证,我们来看n级矩阵,如果A的第一列全为0,秩显然小于n,如果第一列不全为0,不妨设 a 11 a_{11} a11不等于0(因为可以用列交换达到这一结果),从第二行到第n行依次减去第一行的相应的倍数,把 a 21 . . . a n 1 a_{21}...a_{n1} a21...an1消成零,再将行列式按第一列展开,可知展开的n-1级行列式为0,根据假设,这个矩阵的秩小于n-1,而初等行变换不改变矩阵的秩,因为初等行变换是把行向量组变成一个与之等价的向量组,所以A的秩小于n。
    由归纳假设,结论得证。

定理:一矩阵的秩是r的充分必要条件为矩阵中有一个r级子式不为零,同时所有的r+1级子式全为零。
证明:

  1. 必要性。设矩阵的秩为r,则任意r+1个行向量都线性相关,矩阵A的任意r+1级子式的行向量也线性相关,则r+1级子式的行列式都为0。再证至少有一个r级子式不为0。我们可以在A中找到r个线性无关的行向量,把这r个向量组成一个矩阵,行秩为r,那么列秩也为r,也就是有r个列向量线性无关,把这r个列向量拿出来组成的矩阵,则这个矩阵的行列式不为0,这就是满足要求的一个r级子式。
  2. 再证充分性。设在A中有一个r级子式不为0,r+1级子式全为0.
    首先我们知道,如果r+1级子式全为0,那么r+2级子式按行展开,可知也为0.
    设A的秩为t,由必要性。如果t大于r,那么我们可以找到一个t级子式不为0,不满足假设。如果t小于r,那么r级子式全为0.所以t=r。

线性方程组有解判别定理
x 1 α 1 + . . . + x n α n = β α i = ( a 1 i , a 2 i , . . . , a s i ) , β = ( b 1 , b 2 . . . , b s ) x_{1}\alpha_{1}+...+x_{n}\alpha_{n}=\beta \\ \alpha_{i}=(a_{1i} ,a_{2i},...,a_{si}),\beta=(b_{1},b_{2}...,b_{s}) x1α1+...+xnαn=βαi=(a1i,a2i,...,asi),β=(b1,b2...,bs)

定理:线性反成祖有解的充要条件是它的系数矩阵和增广矩阵有相同的秩
证明:

  1. 先证必要性,设线性方程组有解,那么 β \beta β可以被向量组线性表出,则 α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn α 1 , . . . , α n , β \alpha_{1},...,\alpha_{n},\beta α1,...,αn,β等价,说明二者秩相等,即两个矩阵的秩相等。
  2. 再证充分性,二者有相同的秩,那么 α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn α 1 , . . . , α n , β \alpha_{1},...,\alpha_{n},\beta α1,...,αn,β有相同的秩,不妨设 α 1 , . . . , α r \alpha_{1},...,\alpha_{r} α1,...,αr α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn的一极大线性无关组,那么这也是 α 1 , . . . , α n , β \alpha_{1},...,\alpha_{n},\beta α1,...,αn,β的 一个极大线性无关组, β \beta β可以被 α 1 , . . . , α r \alpha_{1},...,\alpha_{r} α1,...,αr线性表出,那也可以被 α 1 , . . . , α n \alpha_{1},...,\alpha_{n} α1,...,αn线性表出,即方程有解。

矩阵运算有关定理

定理:|AB|=|A||B|,两矩阵乘积的行列式等于两矩阵行列式的乘积。
证明:由拉普拉斯定理可证。

定理: 秩 ( A + B ) ≤ 秩 ( A ) + 秩 ( B ) 秩(A+B)\le秩(A)+秩(B) (A+B)(A)+(B)
证明:A和B的行向量组的极大线性无关组肯定可以表示出A+B的行向量组,说明A+B的秩肯定小于两个极大线性无关组加在一起的数量。

定理:A是 n × m n\times m n×m的矩阵,B是 m × s m\times s m×s的矩阵,那么 秩 ( A B ) ≤ m i n [ 秩 ( A ) , 秩 ( B ) ] 秩(AB)\le min[秩(A),秩(B)] (AB)min[(A),(B)],即乘积的秩不超过各因子的秩。
证明:只需证明AB的秩小于A的秩,同时也小于B的秩即可。
B 1 , B 2 . . . B m B_{1},B_{2}...B_{m} B1,B2...Bm表示B的行向量, C 1 , C 2 . . . C m C_{1},C_{2}...C_{m} C1,C2...Cm表示AB的行向量,那么 C i = a i 1 B 1 + . . . + a i m B m C_{i}=a_{i1}B_{1}+...+a_{im}B_{m} Ci=ai1B1+...+aimBm即矩阵AB的行向量组可经B的行向量组线性表出,所以AB的秩小于等于B的秩。
同理可以证明AB的列向量组可以经过A的列向量组线性表出,AB的秩小于等于A的秩。

矩阵的逆

定义:称A为可逆的,如果有方阵B,使得AB=BA=E

定理:A、B为 n × n n\times n n×n矩阵,如果AB=O,那么A的秩加B的秩小于等于n。
证明:B的各个列向量都是AX=0的解,那么B的列向量可以由它的基础解系线性表示出来,于是B的秩小于等于基础解系的秩,等于n减去A的秩。

定理:当A的秩等于n时,伴随矩阵的秩也为n
证明:A的伴随矩阵与A的乘积的行列式等于它们分别的行列式的乘积,等于A的行列式(由伴随矩阵的定义得到),由于A的秩为n,那么A的行列式不为0,则A的伴随矩阵的行列式不为0,说明秩也为n。

定理:A的秩为n-1,伴随矩阵的秩为1
证明:由 A ∗ A = ∣ A ∣ E = 0 A^*A=|A|E=0 AA=AE=0,由结论可知 秩 ( A ) + 秩 ( A ∗ ) ≤ n 秩(A)+秩(A^*)\le n (A)+(A)n所以伴随矩阵的秩等于1(因为伴随矩阵不可能是零矩阵)

定理:当A的秩小于n-1时,伴随矩阵的秩等于0
证明:由定理可知A的n-1级子式的全为0,则伴随矩阵为零矩阵

合同

定义:A、B称为合同的,如果有数域P上可逆的矩阵C,使得 B = C ′ A C B=C'AC B=CAC
性质:自反性、对称性、传递性

定理:在数域P上,任意一个对称矩阵都合同一个对角阵。

正定矩阵

定义:实二次型(系数在数域P中的 x 1 , x 2 . . . x n x_{1},x_{2}...x_{n} x1,x2...xn的二次齐次多项式) f ( x 1 , x 2 . . . x n ) f(x_{1},x_{2}...x_{n}) f(x1,x2...xn)称为正定的,如果有任意一组不全为0的实数,带入到多项式中结果总是大于0的。

定理:n元实二次型是正定的充分必要条件是它的正惯性指数等于n
证明:经过非退化实线性变换替换成标准型,保持正定性不变,而只有当标准型的系数都大于0为正定的充要条件,即正惯性指数为n

定理:实二次型是正定的充分必要条件为顺序主子式全大于零

线性空间

定义:V是一个非空集合,P是一个数域,如果空间满足加法和数乘运算封闭,并且加法和数乘满足下面的规则,V称为数域P上的线性空间。
加法满足下面四条规则:

  1. 加法交换律 α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
  2. 加法结合律 ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
  3. 存在0元素,满足对于V中任一元素 α \alpha α 0 + α = α 0+\alpha=\alpha 0+α=α
  4. 对于每个元素,存在逆元 α + β = 0 \alpha+\beta=0 α+β=0

数乘满足下面两条规则:

  1. 1 α = α 1\alpha=\alpha 1α=α
  2. 结合律 k ( l α ) = ( k l ) α k(l\alpha)=(kl)\alpha k(lα)=(kl)α

数乘和加法满足下面两条规则

  1. 左分配律 ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
  2. 右分配律 k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ

线性子空间

定义:V的子集W,对于V上的两种运算也构成数域P上的线性空间。
我们可以证得对于V的两种运算是封闭的就可以证明W是一个子空间。

子空间的交与和

定理:子空间的交还是子空间。
证明:记两个子空间为V1和V2。首先0属于二者得交,说明非空,在证明满足加法和数乘封闭即可。下面证明加法封闭,令 α , β ∈ V 1 ∩ V 2 \alpha,\beta \in V_{1}\cap V_{2} α,βV1V2,那么向量的加也属于子空间的交,同样可证数乘运算。

定义:V1与V2的和,是指所有能表示成 α 1 + α 2 \alpha_{1}+\alpha_{2} α1+α2,而 α 1 ∫ V 1 , α 2 ∈ V 2 \alpha_{1}\int V_{1},\alpha_{2}\in V_{2} α1V1,α2V2的向量组成的子集和,记作 V 1 + V 2 V_{1}+V_{2} V1+V2

定理:子空间的和也是子空间。

维数公式: V 1 , V 2 V_{1},V_{2} V1,V2是V的两个子空间,那么V1的维数加上V2的维数,等于V1与V2的和的维数加上V1与V2的交的维数。

子空间的直和

定义:子空间的和内的元素分解式唯一,就称这个和为直和。

定理:直和的充要条件是零分解式唯一,即全为零
证明:

  1. 必要性:由直和的定义,分解式唯一。
  2. 充分性:假设有两个分解式 α = α 1 + α 2 = β 1 + β 2 \alpha=\alpha_{1}+\alpha_{2}=\beta_{1}+\beta_{2} α=α1+α2=β1+β2,那么 ( α 1 − β 1 ) + ( α 2 − β 2 ) = 0 (\alpha_{1}-\beta_{1})+(\alpha_{2}-\beta_{2})=0 (α1β1)+(α2β2)=0,由条件可知零分解式唯一,则 α 1 = β 1 , α 2 = β 2 \alpha_{1}=\beta_{1},\alpha_{2}=\beta_{2} α1=β1,α2=β2,说明 α \alpha α的分解式是唯一的。

推论:直和的充要条件为V1与V2的交为零元素。

定理:直和的充要条件为 维 ( V 1 + V 2 ) = 维 ( V 1 ) + 维 ( V 2 ) 维(V_{1}+V_{2})=维(V_{1})+维(V_{2}) (V1+V2)=(V1)+(V2)
证明:有维数公式+上面的推论易证。

线性空间的同构

定义: V V V V ′ V' V称为同构的,如果有一个 V V V V ′ V' V双射 σ \sigma σ,具有线性运算:

  1. σ ( α + β ) = σ ( α ) + σ ( β ) \sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta) σ(α+β)=σ(α)+σ(β)
  2. σ ( k α ) = k σ ( α ) \sigma(k\alpha)=k\sigma(\alpha) σ(kα)=kσ(α)

定理:数域P上的两个有限维线性空间同构的充要条件是它们有相同的维数。

线性变换

定义:线性空间V到自身的映射称为一个变换,这个变换称为线性变换,如果对于V中的任意的元素 α , β \alpha,\beta α,β和数域P中的任意数k,都满足线性运算,即

  1. A ( α + β ) = A ( α ) + σ ( β ) \mathscr A(\alpha+\beta)=\mathscr A(\alpha)+\sigma(\beta) A(α+β)=A(α)+σ(β)
  2. A ( k α ) = k A ( α ) \mathscr A(k\alpha)=k\mathscr A(\alpha) A(kα)=kA(α)

同时定义了线性变换的加法运算、乘法运算、逆变换、 f ( A ) f(\mathscr A) f(A)多项式

线性变换的矩阵

定理:设线性空间V中的线性变换 A \mathscr A A在两组基下的矩阵分别为A和B,从前一组基到后一组基的过渡矩阵是X,那么 B = X − 1 A X B=X^{-1}AX B=X1AX.

相应的定义(相似):可逆矩阵X,使得 B = X − 1 A X B=X^{-1}AX B=X1AX,就说A相似于B,记作A~B
性质:自反性、对称性、传递性

定理:线性变换在不同基下的矩阵是相似的,反过来,如果两个矩阵相似,那么它们可以看作同一线性变化在不同基下所对应的矩阵。
证明:前一部分之前的定理已经证明,现在证明后一部分。A看作一线性变换在一组基 ε 1 , . . . , ε n \varepsilon_{1},...,\varepsilon_{n} ε1,...,εn下的矩阵,因为 B = X − 1 A X B=X^{-1}AX B=X1AX,令 ( η 1 , . . . , η n ) = ( ε 1 , . . . , ε n ) X (\eta_{1},...,\eta_{n})=(\varepsilon_{1},...,\varepsilon_{n})X (η1,...,ηn)=(ε1,...,εn)X,显然 η 1 , . . . , η n \eta_{1},...,\eta_{n} η1,...,ηn也是一组基,并且在这组基下的矩阵是B。

对角矩阵

定理: A \mathscr A A在某组基下为对角矩阵的充要条件是, A \mathscr A A有n个线性无关的特征向量。
证明:设 A \mathscr A A在基 ε 1 , . . . , ε n \varepsilon_{1},...,\varepsilon_{n} ε1,...,εn下具有对角矩阵,这就是说 A ε i = λ i ε i \mathscr A\varepsilon_{i}=\lambda_{i}\varepsilon_{i} Aεi=λiεi,因此 ε 1 , . . . , ε n \varepsilon_{1},...,\varepsilon_{n} ε1,...,εn就是 A \mathscr A A的n个线性无关的特征向量。
反过来,如果有n个线性无关的特征向量,取这作为基,那么在这组基下 A \mathscr A A的矩阵式对角矩阵。

值域与核

定义: A \mathscr A A全体像组成的集合称为 A \mathscr A A值域,所有被 A \mathscr A A变成零的向量组成的集合称为,它们的维数分别称为 A \mathscr A A A \mathscr A A零度

不变子空间

A \mathscr A A是数域P上线性空间V的线性变换,W是V的子空间,如果W中的向量在 A \mathscr A A下的像仍然在W中,也就是说,对W中任意一向量 ξ \xi ξ,有 A ξ ∈ W \mathscr A\xi \in W AξW,我们就称W是 A \mathscr A A的不变子空间。

定理: A \mathscr A A的特征多项式 f ( λ ) f(\lambda) f(λ)可以分解成一次多项式的乘积,则V可分解成不变子空间的直和。

不变因子

定理:等价的 λ \lambda λ-矩阵具有相同的秩与相同的行列式因子(A( λ \lambda λ)中全部k级子式的首项系数为1的最大公因式)
证明:只需证明经过一次初等变换,秩与行列式因子是不变的。

定义:标准形的主对角线上非零元素称为 λ − \lambda- λ矩阵的不变因子

定理:两个 λ − \lambda- λ矩阵等价的充要条件是它们有相同的行列式因子,或者,它们有相同的不变因子,因为不变因子是被行列式因子唯一决定的,即 d r ( λ ) = D r ( λ ) D r − 1 ( λ ) d_{r}(\lambda)=\frac{D_{r}(\lambda)}{D_{r-1}(\lambda)} dr(λ)=Dr1(λ)Dr(λ)

矩阵相似条件

定理:数组矩阵A和B相似的充要条件是它们的特征矩阵 λ E − A \lambda E-A λEA λ E − B \lambda E-B λEB等价。

欧几里得空间

定义:V是实数域上一线性空间,在V上定义了一个二元实函数,称为内积,记作 ( α , β ) (\alpha,\beta) (α,β),它具有以下性质:

  1. ( α , β ) (\alpha,\beta) (α,β)= ( β , α ) (\beta,\alpha) (β,α) 交换
  2. ( k α , β ) (k\alpha,\beta) (kα,β)= k ( α , β ) k(\alpha,\beta) k(α,β) 数乘
  3. ( α + β , γ ) (\alpha+\beta,\gamma) (α+β,γ)= ( α , γ ) + ( β , γ ) (\alpha,\gamma)+(\beta,\gamma) (α,γ)+(β,γ) 分配
  4. ( α , α ) ≥ 0 (\alpha,\alpha)\ge0 (α,α)0,当且仅当 α = 0 \alpha=0 α=0时,等号成立

这样的线性空间V称为欧几里得空间

定义:矩阵 A = ( a i j ) n n A=(a_{ij})_{nn} A=(aij)nn a i j = ( ε i , ε j ) a_{ij}=(\varepsilon_{i},\varepsilon_{j}) aij=(εi,εj)称为基 ε 1 , . . . , ε n \varepsilon_{1},...,\varepsilon_{n} ε1,...,εn的度量矩阵。
( α , α ) = X ′ A X > 0 (\alpha,\alpha)=X'AX>0 (α,α)=XAX>0知道度量矩阵是正定的。反之,也可以根据正定矩阵和一组基来规定线性空间上的内积,使得它成为欧式空间。

欧式空间的同构

实数域R上欧式空间 V V V V ′ V' V称为同构的,如果由 V V V V ′ V' V有一个双射 σ \sigma σ,满足

  1. σ ( α + β ) = σ ( α ) + σ ( β ) \sigma(\alpha+\beta)=\sigma(\alpha)+\sigma(\beta) σ(α+β)=σ(α)+σ(β)
  2. σ ( k α ) = k σ ( α ) \sigma(k\alpha)=k\sigma(\alpha) σ(kα)=kσ(α)
  3. ( σ ( α ) , σ ( β ) ) = ( α , β ) (\sigma(\alpha),\sigma(\beta))=(\alpha,\beta) (σ(α),σ(β))=(α,β)

σ \sigma σ称为 V V V V ′ V' V同构映射

正交矩阵

定义:n级实数矩阵A称为正交矩阵,如果 A ′ A = E A'A=E AA=E.
由分析,我们可以知道,由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是标准正交矩阵,那么第二组基也是标准正交基。

正交变化

定义:欧式空间V中的线性变换 A \mathscr A A称为正交变化,如果它保持向量的内积不变,即对于任意的 α , β ∈ V \alpha,\beta\in V α,βV,都有 ( A α , A β ) = ( α , β ) (\mathscr A\alpha,\mathscr A\beta)=(\alpha,\beta) (Aα,Aβ)=(α,β).

定理:刻画正交变换,下面四个等价:

  1. A \mathscr A A是正交变换
  2. A \mathscr A A保持向量的长度不变
  3. 标准正交基,经过 A \mathscr A A变换后还是标准正交基
  4. A \mathscr A A在任一组标准正交基下的矩阵式正交矩阵

实对称矩阵的标准型

定理:对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵T,使得 T ′ A T = T − 1 A T T'AT=T^{-1}AT TAT=T1AT成对角形。
做法:

  1. 求出A的特征值
  2. 找到每个特征值的特征向量
  3. 将这n个特征向量正交化,标准化

未完待续。。。

  • 11
    点赞
  • 71
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值